Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

kevinlui's site

7234 views
1
\documentclass[addpoints]{exam}
2
\usepackage{amsmath}
3
\usepackage{amsfonts}
4
5
\newcommand{\range}{\mathrm{range}}
6
\newcommand{\spn}{\mathrm{span}}
7
\newcommand{\nll}{\mathrm{null}}
8
\newcommand{\proj}{\mathrm{proj}}
9
\newcommand{\rank}{\mathrm{rank}}
10
\newcommand{\row}{\mathrm{row}}
11
12
\printanswers
13
14
\pagestyle{headandfoot}
15
\runningheadrule
16
\firstpageheader{}{}{}
17
\runningheader{Math 308L Autumn 2017}
18
{Final Exam, Page \thepage\ of \numpages}
19
{December 14, 2017}
20
\firstpagefooter{}{\thepage}{}
21
\runningfooter{}{\thepage}{}
22
23
\begin{document}
24
25
\begin{center}
26
Math 308L - Autumn 2017
27
28
Final Exam
29
30
December 14, 2017
31
\end{center}
32
33
\ifprintanswers
34
\textbf{\huge KEY}
35
\else
36
Name: \hrulefill
37
38
Student ID Number: \hrulefill
39
\fi
40
41
\vspace{0.3cm}
42
43
\begin{center}
44
\gradetable[v][questions]
45
\end{center}
46
47
\vspace{0.3cm}
48
49
\begin{itemize}
50
\item
51
There are 7 problems on this exam. Be sure you have all 7 problems on
52
your exam.
53
\item
54
The final answer must be left in exact form. Box your final answer.
55
\item
56
You are allowed the TI-30XIIS calculator. It is possible to complete
57
the exam without a calculator.
58
\item
59
You are allowed a single sheet of 2-sided self-written notes.
60
\item
61
You must show your work to receive full credit. A correct answer
62
with no supporting work will receive a zero.
63
\item
64
Use the backsides if you need extra space. Make a note of this if you
65
do.
66
\item
67
Do not cheat. This exam should represent your own work. If you are
68
caught cheating, I will report you to the Community Standards and
69
Student Conduct office.
70
\end{itemize}
71
72
\textbf{Conventions}:
73
\begin{itemize}
74
\item
75
I will often denote the zero vector by $0$.
76
\item
77
When I define a variable, it is defined for that whole question. The $A$
78
defined in Question 2 is the same for each part.
79
\item
80
I often use $x$ to denote the vector $(x_1,x_2,\ldots,x_n)$. It should be clear from context.
81
\item
82
Sometimes I write vectors as a row and sometimes as a column. The
83
following are the same to me.
84
\[
85
(1,2,3) \quad
86
\begin{bmatrix}
87
1 \\
88
2 \\
89
3
90
\end{bmatrix}.
91
\]
92
\item
93
I write the evaluation of linear transformations in a few ways. The
94
following are the same to me.
95
\[
96
T(1,2,3) \quad T((1,2,3)) \quad T \left(
97
\begin{bmatrix}
98
1 \\ 2\\ 3
99
\end{bmatrix}
100
\right)
101
\]
102
\end{itemize}
103
104
105
\newpage
106
107
\begin{questions}
108
109
110
\question
111
Give an example of each of the following. If it is not possible, write
112
``NOT POSSIBLE''.
113
\begin{parts}
114
\part[2]
115
Give an example of a $2\times 3$ matrix $A$ and a vector $b\in
116
\mathbb{R}^2$ such that $Ax=b$ has no solutions but $Ax=0$ has
117
infinitely many solutions.
118
\begin{solution}
119
Let
120
\[
121
A =
122
\begin{bmatrix}
123
1 & 1 & 1 \\
124
0 & 0 & 0
125
\end{bmatrix}
126
\]
127
and $b=(0,1)$.
128
\end{solution}
129
\vfill
130
\part[2]
131
Give an example of a linear system in 3 variables whose solution space
132
is the intersection of the $x+y+z=0$ plane and the $xy$-plane.
133
\begin{solution}
134
The linear system given by
135
\[
136
\begin{aligned}
137
x+y+z &= 0 \\
138
z &= 0
139
\end{aligned}
140
\]
141
\end{solution}
142
\vfill
143
\part[2]
144
Give an example of a $2\times 2$ matrix $A$ such that $A^4 = I_2$ but
145
$A^2 \neq I_2$. If possible, give the matrix $A$ explicitly.
146
\begin{solution}
147
Let $A$ be the rotation by $\pi/2$ matrix. This is given by
148
\[
149
\begin{bmatrix}
150
0 & -1 \\
151
1 & 0
152
\end{bmatrix}.
153
\]
154
\end{solution}
155
\vfill
156
\part[2]
157
Give an example of 2 linear transformations $T:\mathbb{R}^2\to \mathbb{R}^2$
158
and $S:\mathbb{R}^2\to\mathbb{R}^2$ such that $\range(T)=\ker(S)$.
159
\begin{solution}
160
Let $T(x,y)=(x,y)$ and $S(x,y)=(0,0)$.
161
\end{solution}
162
\vfill
163
\part[2]
164
Give an example of an orthogonal matrix that is not invertible.
165
\begin{solution}
166
NOT POSSIBLE. The inverse of an orthogonal matrix is its transpose.
167
\end{solution}
168
\vfill
169
\part[2]
170
Give an example of an diagonalizable matrix that is not orthogonally
171
diagonalizable.
172
\begin{solution}
173
\[
174
\begin{bmatrix}
175
1 & 0 \\
176
1 & 0
177
\end{bmatrix}
178
\]
179
\end{solution}
180
\vfill
181
\end{parts}
182
183
\newpage
184
185
\question
186
Let $A$ be defined by
187
\[
188
A =
189
\begin{bmatrix}
190
1 & 2 & 1\\
191
2 & 4 & 2\\
192
0 & 0 & 1
193
\end{bmatrix}.
194
\]
195
\begin{parts}
196
\part[4]
197
Find a basis for the solution space $Ax=0$.
198
\begin{solution}
199
$\{(2,-1,0)\}$
200
\end{solution}
201
\vfill
202
\part[4]
203
What is the general solution to $Ax=
204
\begin{bmatrix}
205
3 \\ 6 \\ -3
206
\end{bmatrix}$?
207
\begin{solution}
208
$(6,0,-3)+s_1(2,-1,0)$.
209
\end{solution}
210
\vfill
211
\part[4]
212
Is there a vector $y\in \mathbb{R}^3$ such that $Ax=y$ has no
213
solutions? If so, give an example. If not, why not?
214
\begin{solution}
215
Yes. Many possibilities.
216
\end{solution}
217
\vfill
218
\end{parts}
219
220
\newpage
221
222
\question
223
Let $A$ and $B$ be equivalent matrices defined by
224
\[
225
A =
226
\begin{bmatrix}
227
-3 & 3 & -1 & -9 & 3\\
228
2 & -2 & 1 & 7 & -1\\
229
4 & -4 & 5 & 23 & 7
230
\end{bmatrix}
231
\sim
232
\begin{bmatrix}
233
1 & -1 & 0 & 2 & -2\\
234
0 & 0 & 1 & 3 & 3\\
235
0 & 0 & 0 & 0 & 0
236
\end{bmatrix}
237
= B.
238
\]
239
\begin{parts}
240
\part[4]
241
Find a basis for the solution space of $Ax=0$.
242
\begin{solution}
243
$\{(1,1,0,0,0),(-2,0,-3,1,0),(2,0,-3,0,1)\}$
244
\end{solution}
245
\vfill
246
\part[4]
247
Let $a_1,a_2,a_3,a_4,a_5$ be the columns of $A$. Define $C=[a_1 \;
248
a_2\; a_3 \; a_4]$. What is a particular solution to $Cx = a_5$?
249
\begin{solution}
250
$(-2, 0, 3, 0)$.
251
\end{solution}
252
\vfill
253
\part[4]
254
Using the same variables as (b), what is the general solution to
255
$Cx=3a_4-a_5$?
256
\begin{solution}
257
$(8,0,6,0)+s_1(1,1,0,0)+s_2(-2,0,-3,1)$.
258
\end{solution}
259
\vfill
260
\end{parts}
261
262
\newpage
263
264
\question
265
Let $S$ be a subspace of $\mathbb{R}^4$ defined by
266
\[
267
S=
268
\spn
269
\left\{
270
\begin{bmatrix}
271
1 \\ 1 \\ 1 \\ 1
272
\end{bmatrix}
273
,
274
\begin{bmatrix}
275
1 \\ 1 \\ 0 \\ 0
276
\end{bmatrix}
277
,
278
\begin{bmatrix}
279
0 \\ 0 \\ 1 \\ 1
280
\end{bmatrix}
281
\right\}.
282
\]
283
\begin{parts}
284
\part[3]
285
What is a basis for $(S^\perp)^\perp$?
286
\begin{solution}
287
$\{(1,1,0,0),(0,0,1,1)\}$.
288
\end{solution}
289
\vfill
290
\part[3]
291
What is a basis for $S^\perp$?
292
\begin{solution}
293
$\{(1,-1,0,0),(0,0,1,-1)\}$.
294
\end{solution}
295
\vfill
296
\part[3]
297
Does there exist a rank 2 matrix $A$ such that $\nll(A)=S$? If so, give
298
an example. If not, why not?
299
\begin{solution}
300
If $\nll(A)=S$ then $\row(A)=S^\perp$ so we can take
301
\[
302
\begin{bmatrix}
303
1 & -1 & 0 & 0 \\
304
0 & 0 & 1 & -1
305
\end{bmatrix}.
306
\]
307
\end{solution}
308
\vfill
309
\part[3]
310
Does there exist a rank 3 matrix $A$ such that $\nll(A)=S$? If so, give
311
an example. If not, why not?
312
\begin{solution}
313
No. By the rank-nullity theorem, $\rank(A)+\nll(A)=4$. Since $\dim
314
S=2$, the rank of $A$ must be 2.
315
\end{solution}
316
\vfill
317
\end{parts}
318
319
\newpage
320
321
\question
322
Let $T:\mathbb{R}^3\to\mathbb{R}^3$ be the linear transform defined by the
323
following properties:
324
\begin{itemize}
325
\item
326
$T(0,0,1)=(0,0,0)$,
327
\item
328
If $v$ is in the $xy$-plane, then $v$ is reflected across the
329
$x+y=0$ plane.
330
\end{itemize}
331
There is a matrix $A$ such that $T(x)=Ax$. The goal of this problem is to
332
understand $A$.
333
\begin{parts}
334
\part[3]
335
Find a basis $\{u,v,w\}$ where the action of $T$ is
336
well-understood. Give also $T(u), T(v)$, and $T(w)$.
337
\begin{solution}
338
\[
339
u = (0,0,1), T(u)=(0,0,0)
340
\]
341
\[
342
v = (1,1,0), T(v)=(-1,-1,0)
343
\]
344
\[
345
w = (1,-1,0), T(w)=(1,-1,0)
346
\]
347
\end{solution}
348
\vfill
349
\part[3]
350
Find the eigenvalues of $A$ and a basis for each eigenspace of $A$.
351
(Think geometrically.)
352
\begin{solution}
353
Part (a) gives the answer.
354
355
$\lambda=0$ is an eigenvalue with eigenspace spanned by $u$.
356
357
$\lambda=-1$ is an eigenvalue with eigenspace spanned by $v$.
358
359
$\lambda=1$ is an eigenvalue with eigenspace spanned by $w$.
360
\end{solution}
361
\vfill
362
\part[3]
363
What is $A$? You may express it as product of matrices and their
364
inverses.
365
\begin{solution}
366
Using the theory of diagonalization,
367
\[
368
A =
369
\begin{bmatrix}
370
0 & 1 & 1 \\
371
0 & 1 & -1 \\
372
1 & 0 & 0
373
\end{bmatrix}
374
\begin{bmatrix}
375
0 & 0 & 0 \\
376
0 & -1 & 0 \\
377
0 & 0 & 1
378
\end{bmatrix}
379
\begin{bmatrix}
380
0 & 1 & 1 \\
381
0 & 1 & -1 \\
382
1 & 0 & 0
383
\end{bmatrix}^{-1}
384
\]
385
\end{solution}
386
\vfill
387
\part[3]
388
What is $A^2$? Give it explicitly as a single matrix. (Think
389
geometrically.)
390
\begin{solution}
391
We can see that $A^2$ is projecting onto the $xy$-plane. So
392
\[
393
A^2 =
394
\begin{bmatrix}
395
1 & 0 & 0 \\
396
0 & 1 & 0 \\
397
0 & 0 & 0
398
\end{bmatrix}.
399
\]
400
\end{solution}
401
\vfill
402
\end{parts}
403
404
\newpage
405
406
\question
407
Let $A$ be the symmetric matrix defined as
408
\[
409
A=
410
\begin{bmatrix}
411
1 & -1 & -1 \\
412
-1 & 1 & -1 \\
413
-1 & -1 & 1
414
\end{bmatrix}
415
=
416
\begin{bmatrix}
417
1 & -1 & -2 \\
418
1 & 0 & 1 \\
419
1 & 1 & 1
420
\end{bmatrix}
421
\begin{bmatrix}
422
-1 & 0 & 0 \\
423
0 & 2 & 0 \\
424
0 & 0 & 2
425
\end{bmatrix}
426
\begin{bmatrix}
427
1 & -1 & -2 \\
428
1 & 0 & 1 \\
429
1 & 1 & 1
430
\end{bmatrix}^{-1}.
431
\]
432
\begin{parts}
433
\part[3]
434
Find the eigenvalues of $A$ and a basis for each eigenspace of $A$.
435
\begin{solution}
436
$\lambda = -1$ is an eigenvalue with $\{(1,1,1)\}$ as a basis for
437
its eigenspace.
438
439
$\lambda = 2$ is an eigenvalue with $\{(-1,0,1),(-2,1,1)\}$ as a
440
basis for its eigenspace.
441
\end{solution}
442
\vfill
443
\vfill
444
\vfill
445
\part[3]
446
Find a basis for each of the following subspaces.
447
\begin{itemize}
448
\item
449
$\nll(A)$
450
\vfill
451
\begin{solution}
452
Since $0$ is not an eigenvalue, $\nll(A)=\{0\}$ with basis
453
$\emptyset$.
454
\end{solution}
455
\item
456
$\nll(A-I)$
457
\begin{solution}
458
Since $1$ is not an eigenvalue, $\nll(A)=\{0\}$ with basis
459
$\emptyset$.
460
\end{solution}
461
\vfill
462
\item
463
$\nll(A-2I)$.
464
\begin{solution}
465
We have that $\nll(A-2I)=E_2$ which has basis
466
$\{(-1,0,1),(-2,1,1)\}$.
467
\end{solution}
468
\vfill
469
\end{itemize}
470
\vfill
471
\part[3]
472
Find an orthogonal matrix $Q$ and a diagonal matrix $D$ such that
473
$A=QDQ^{-1}$.
474
\begin{solution}
475
We use Gram-Schmidt to perform an orthogonal basis for each
476
eigenspace.
477
478
An orthonormal basis for the eigenspace corresponding to
479
$\lambda=-1$ is $\{(1/3,1/3,1/3)\}$.
480
481
An orthonormal basis for $\lambda=2$ is
482
$\{\frac{1}{\sqrt{2}}(-1,0,1),\sqrt{\frac{2}{3}}(-1/2,1,-1/2)\}$.
483
\end{solution}
484
\vfill
485
\vfill
486
\vfill
487
\part[3]
488
Find all $k\in \mathbb{R}$ such that $A-kI_3$ is not invertible.
489
\begin{solution}
490
$k=-1,2$.
491
\end{solution}
492
\vfill
493
\end{parts}
494
495
496
\newpage
497
498
\question
499
Let $v=(2,2,1)$ and $T:\mathbb{R}^3\to\mathbb{R}^3$ be defined by
500
$T(x)=\proj_v x$.
501
\begin{parts}
502
\part[4]
503
Find an orthogonal basis for $\mathbb{R}^3$ that contains $v$. (Hint:
504
first find a basis for $\mathbb{R}^3$ that contains $v$.)
505
\begin{solution}
506
$\{(2,2,1),(1,0,-2),(0,1,-2)\}$.
507
\end{solution}
508
\vfill
509
\vfill
510
\vfill
511
\vfill
512
\vfill
513
\vfill
514
\vfill
515
\part[4]
516
There exists a matrix $A$ such that $T(x)=Ax$. Find the eigenvalues of
517
$A$ and a basis for each eigenspace of $A$. (Hint: see part (a).)
518
\begin{solution}
519
The eigenspace corresponding to $1$ is spanned by $(2,2,1)$.
520
521
The eigenspace corresponding to $0$ is spanned by
522
$(1,0,-2),(0,1,-2)$.
523
\end{solution}
524
\vfill
525
\vfill
526
\vfill
527
\vfill
528
\part[4]
529
Let $e_1=(1,0,0)$. Evaluate the following:
530
\begin{itemize}
531
\item
532
$Ae_1$
533
\begin{solution}
534
This is $T(e_1)=\proj_{v} e_1 = (4/9,4/9,2/9)$.
535
\end{solution}
536
\vfill
537
\item
538
$A^2e_1$
539
\begin{solution}
540
Doing two projections is the same as one.
541
\end{solution}
542
\vfill
543
\item
544
$A^{100}e_1$
545
\begin{solution}
546
Doing one hundred projections is the same as one.
547
\end{solution}
548
\vfill
549
\end{itemize}
550
\vfill
551
\end{parts}
552
553
554
\end{questions}
555
556
\end{document}
557
558