Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

kevinlui's site

7239 views
1
\documentclass{article}
2
\usepackage{fullpage}
3
\usepackage{hyperref}
4
5
6
\begin{document}
7
\begin{center}
8
7/9
9
\end{center}
10
11
\section{2.3}
12
\begin{enumerate}
13
\item
14
Recall the weird bracket thing.
15
\item
16
The space of all linear transformation from $V$ to $W$ is a vector
17
space. It is a subspace of $F(V,W)$. It is denoted $L(V,W)$. What is
18
its dimension? What is a basis for it?
19
\item
20
Left-shift and right-shift operations.
21
\item
22
The $A_{ij}$ notation is a thing.
23
\item
24
Let $A$ be a $m\times n$ matrix and $B$ be a $n\times p$ matrix. Then
25
the product is the $m\times p$ matrix given by
26
\[
27
(AB)_{ij}=\sum_{k=1} ^n A_{ik} B_{kj}
28
\]
29
for $1\leq i\leq m$ and $1\leq j\leq p$.
30
\item
31
Matrix multiplication corresponds to linear map composition. See Tao's
32
notes pg 99 and 100
33
\item
34
Given a matrix $A$, we can define the left multiplication
35
transformation. Give an example.
36
\item
37
Give properties. Show associativity proof. See 93 in FIS.
38
\end{enumerate}
39
40
\section{2.4}
41
\begin{enumerate}
42
\item
43
Isomorphism allow us to say that 2 spaces are essentially the same.
44
\item
45
For example, $x$-axis and $R$.
46
\item
47
Let $V$ and $W$ be vector spaces. Then a linear transformation is
48
invertible if it has a 2-sided inverse.
49
\item
50
Theorem: Inverses are unique.
51
\item
52
Theorem: $(TU)^{-1}=U^{-1}T^{-1}$.
53
\item
54
Inverses are invertible.
55
\item
56
Bubbles. Rank is dimension of domain.
57
\end{enumerate}
58
\end{document}
59
60