\documentclass{article}
\usepackage{fullpage}
\begin{document}
\begin{center}
{\bf Quiz 3}
\end{center}
Name:
\begin{enumerate}
\item
Let $V$ and $W$ be finite dimensional vector spaces with an one-to-one
linear transformation $T:V\to W$. Prove that $\dim V \leq \dim W$.
(Hint: If $X$ is a vector space with $\dim X=n$ then any linearly
independent subset of $X$ must have cardinality less than $n$.)
\vfill
\item
Let $V$ and $W$ be a finite dimensional vector spaces with a onto
linear transformation $T:V\to W$. Let $S$ be any spanning set of $V$.
Prove that $T(S)=\{T(s):s\in S\}$ is also spanning.
\vfill
\end{enumerate}
\end{document}