\documentclass{article}
\usepackage{fullpage}
\usepackage{enumerate}
\begin{document}
\begin{center}
{\bf Quiz 7}
\end{center}
Name:
\begin{enumerate}
\item
Prove or give a counterexample: Let $T_1:V\to V$ be a linear
transformation with eigenvalue $\lambda_1$ and $T_2:V\to V$ be a linear
transformation with eigenvalue $\lambda_2$. Then $\lambda_1+\lambda_2$
is always an eigenvalue for $T_1+T_2$.
\vfill
\item
Prove or give a counterexample: Let $T:V\to V$ be a linear
transformations with eigenvalue $\lambda$. Then $\lambda^k$ is always
an eigenvalue of $T^k$ for any positive integer $k$.
\vfill
\end{enumerate}
\end{document}