Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

kevinlui's site

7239 views
1
\documentclass[addpoints]{exam}
2
\usepackage{amsmath}
3
\usepackage{amsfonts}
4
5
\makeatletter
6
\renewcommand*\env@matrix[1][*\c@MaxMatrixCols c]{%
7
\hskip -\arraycolsep
8
\let\@ifnextchar\new@ifnextchar
9
\array{#1}}
10
\makeatother
11
12
\newcommand{\rank}{\mathrm{rank}}
13
\newcommand{\nullity}{\mathrm{nullity}}
14
\newcommand{\spn}{\mathrm{span}}
15
\newcommand{\col}{\mathrm{col}}
16
\newcommand{\row}{\mathrm{row}}
17
\newcommand{\nll}{\mathrm{null}}
18
\newcommand{\range}{\mathrm{range}}
19
20
\printanswers
21
22
\pagestyle{headandfoot}
23
\runningheadrule
24
\firstpageheader{}{}{}
25
\runningheader{Math 308L Autumn 2017}
26
{Midterm 2, Page \thepage\ of \numpages}
27
{November 15, 2017}
28
\firstpagefooter{}{\thepage}{}
29
\runningfooter{}{\thepage}{}
30
31
\begin{document}
32
33
\begin{center}
34
Math 308L - Autumn 2017
35
36
Midterm 2
37
38
November 15, 2017
39
\end{center}
40
41
\ifprintanswers
42
\textbf{\huge KEY}
43
\else
44
Name: \hrulefill
45
46
Student ID Number: \hrulefill
47
\fi
48
49
\vspace{0.3cm}
50
51
\begin{center}
52
\gradetable[v][questions]
53
\end{center}
54
55
\vspace{0.3cm}
56
57
\begin{itemize}
58
\item
59
There are 5 problems on this exam. Be sure you have all 5 problems on
60
your exam.
61
\item
62
The final answer must be left in exact form. Box your final answer.
63
\item
64
You are allowed the TI-30XIIS calculator. It is possible to complete
65
the exam without a calculator.
66
\item
67
You are allowed a single sheet of 2-sided handwritten self-written notes.
68
\item
69
You must show your work to receive full credit. A correct answer
70
with no supporting work will receive a zero.
71
\item
72
Use the backsides if you need extra space. Make a note of this if you
73
do.
74
\item
75
Do not cheat. This exam should represent your own work. If you are
76
caught cheating, I will report you to the Community Standards and
77
Student Conduct office.
78
\end{itemize}
79
80
\textbf{Conventions}:
81
\begin{itemize}
82
\item
83
I will often denote the zero vector by $0$.
84
\item
85
When I define a variable, it is defined for that whole question. The $A$
86
defined in Question 1 is the same for each part.
87
\item
88
I often use $x$ to denote the vector $(x_1,x_2,\ldots,x_n)$. It should be clear from context.
89
\item
90
Sometimes I write vectors as a row and sometimes as a column. The
91
following are the same to me.
92
\[
93
(1,2,3) \quad
94
\begin{bmatrix}
95
1 \\
96
2 \\
97
3
98
\end{bmatrix}.
99
\]
100
\item
101
I write the evaluation of linear transforms in a few ways. The
102
following are the same to me.
103
\[
104
T(1,2,3) \quad T((1,2,3)) \quad T \left(
105
\begin{bmatrix}
106
1 \\ 2\\ 3
107
\end{bmatrix}
108
\right)
109
\]
110
\end{itemize}
111
112
113
\newpage
114
115
\begin{questions}
116
117
\question
118
Answer the following parts:
119
\begin{parts}
120
\part[6]
121
Let
122
\[
123
A=
124
\begin{bmatrix}
125
1 & 3 & 2 \\
126
0 & 1 & 1 \\
127
0 & 0 & 3
128
\end{bmatrix}.
129
\]
130
\begin{subparts}
131
\subpart
132
What is $A^{-1}$?
133
\begin{solution}
134
\[
135
A^{-1}=
136
\begin{bmatrix}
137
1 & -3 & 1/3 \\
138
0 & 1 & -1/3 \\
139
0 & 0 & 1/3
140
\end{bmatrix}
141
\]
142
\end{solution}
143
\vfill
144
\vfill
145
\subpart
146
What is $\det(2\cdot A^{-1})$?
147
\begin{solution}
148
\[
149
\det(2\cdot A^{-1})=2^3 \det(A^{-1}) = 8/3.
150
\]
151
\end{solution}
152
\vfill
153
\end{subparts}
154
\part[6]
155
(Tricky.) Let
156
\[
157
B=
158
\begin{bmatrix}
159
1 & 1 & 11 \\
160
-1 & 0 & 15 \\
161
1 & 2 & 2017
162
\end{bmatrix},
163
\quad
164
y=
165
\begin{bmatrix}
166
1 \\ -2 \\ 0
167
\end{bmatrix}.
168
\]
169
It turns out that $y$ is in the span of the first and second column of
170
$B$ and $B$ is invertible. What is $B^{-1}y$? (Hint: Despite
171
appearances, this is a quick computation.)
172
\begin{solution}
173
Denote the columns of $B$ by $b_1,b_2,b_3$. Let $B^{-1}y=x$. Then
174
$Bx=y$ and we are trying to find $x$. This amounts to solving a
175
linear system. If $x=(x_1,x_2,x_3)$, then
176
\[
177
x_1b_1+x_2b_2+x_3b_3 = y.
178
\]
179
But we know that $y$ is in the span of $b_1$ and $b_2$ so $x_3=0$
180
and we are left with
181
\[
182
x_1b_1+x_2b_2 = y.
183
\]
184
This yields the much easier linear system
185
\[
186
\begin{bmatrix}[cc|c]
187
1 & 1 & 1 \\
188
-1 & 0 & -2 \\
189
1 & 2 & 0
190
\end{bmatrix}
191
\]
192
which has solutions $x_1=2$ and $x_2=-1$. So altogether, we have
193
\[
194
(x_1,x_2,x_3)=(2,-1,0).
195
\]
196
\end{solution}
197
\vfill
198
\vfill
199
\vfill
200
\end{parts}
201
202
\newpage
203
204
\question
205
Give an example of each of the following. If it is not possible, write
206
``NOT POSSIBLE''.
207
\begin{parts}
208
\part[3]
209
Give an example of 2 linear transforms $T:\mathbb{R}^3\to \mathbb{R}^2$
210
and $S:\mathbb{R}^2\to\mathbb{R}^3$ such that $T\circ
211
S:\mathbb{R}^2\to\mathbb{R}^2$ is invertible.
212
\begin{solution}
213
Let $T(x,y,z)=(x,y)$ and $S(x,y)=(x,y,0)$. Then $(T\circ
214
S)(x,y)=(x,y)$ which is the identity transform which is invertible.
215
\end{solution}
216
\vfill
217
\part[3]
218
Give an example of a basis for $\mathbb{R}^3$ such that every basis
219
element lies in the plane $x+y+z=0$.
220
\begin{solution}
221
NOT POSSIBLE. The set $x+y+z=0$ is a 2-dimensional subspace. There
222
is no basis of $\mathbb{R}^3$ that lie in a 2-dimensional subspace.
223
\end{solution}
224
\vfill
225
\part[3]
226
Give an example of two different matrices $A$ and $B$ such that
227
$\col(A)=\col(B)$ and $\nll(A)=\nll(B)$.
228
\begin{solution}
229
Pick your favorite natural number $n$. Let $A=I_n$ and $B=2\cdot
230
I_n$. Then $\col(A)=\col(B)=\mathbb{R}^n$ and
231
$\nll(A)=\nll(B)=\{0\}$.
232
\end{solution}
233
\vfill
234
\part[3]
235
Give an example of two $2\times 2$ matrices $A$ and $B$ such that
236
$\det(A + B) \neq \det(A) + \det(B)$.
237
\begin{solution}
238
Let $A=I_2$ and $B=I_2$. Then
239
\[
240
\det(A+B)=4 \quad \text{and} \quad \det(A)=\det(B)=1.
241
\]
242
\end{solution}
243
\vfill
244
\end{parts}
245
246
\newpage
247
248
\question
249
Let $v=(1,1,-1)$ and $L_v=\spn(\{v\})$. Let $T:\mathbb{R}^3\to\mathbb{R}^3$
250
be the linear transform that is the projection onto $L_v$. This tells us 2
251
things about $T$:
252
\begin{itemize}
253
\item
254
$T(x)=x$ if $x\in L_v$,
255
\item
256
$T(x)=0$ if $x$ is orthogonal to $v$ (so if $x\cdot v=0$).
257
\end{itemize}
258
There exists a matrix $A$ such that $T(x)=Ax$. The goal of this problem is
259
to determine $A$.
260
261
\begin{parts}
262
\part[4]
263
Give a basis for $\mathbb{R}^3$ that contains $v$ and 2 vectors
264
orthogonal to $v$. (Hint: Recall that $(a_1,a_2,a_3)\cdot
265
(b_1,b_2,b_3)=a_1b_1+a_2b_2+a_3b_3$.)
266
\begin{solution}
267
There are two methods to find 2 vectors orthogonal to $v$.
268
\begin{itemize}
269
\item
270
Eyeball it.
271
\item
272
Find 2 particular solutions to $v\cdot
273
(x,y,z)=x+y-z=0$.
274
\end{itemize}
275
We find that $(1,0,1)$ and $(0,1,1)$ are distinct vector orthogonal
276
to $v$. A basis for $\mathbb{R}^3$ is then given by
277
\[
278
\{v,(1,0,1),(0,1,1)\}.
279
\]
280
\end{solution}
281
\vfill
282
\vfill
283
\part[4]
284
Answer the following questions about $A$.
285
\begin{subparts}
286
\subpart
287
Give a basis for $\nll(A)$.
288
\begin{solution}
289
The null space of $A$ is the kernel of $T$. We see that this is
290
spanned by $\{(1,0,1),(0,1,1)\}$.
291
\end{solution}
292
\vfill
293
\subpart
294
Give a basis for $\col(A)$.
295
\begin{solution}
296
We can see that $T$ sends everything to $L_v$ so a basis for
297
$\col(A)=\range(T)$ is $\{v\}$.
298
\end{solution}
299
\vfill
300
\subpart
301
What is the rank of $A$?
302
\begin{solution}
303
From the last part, we can see that the rank is 1.
304
\end{solution}
305
\vfill
306
\subpart
307
What is $\det(A)$?
308
\begin{solution}
309
The determinant of $A$ is zero as $T$ is not invertible.
310
\end{solution}
311
\vfill
312
\end{subparts}
313
\part[4]
314
What is $A$? You may express $A$ as a product of matrices and their inverses.
315
\begin{solution}
316
From past worksheets and lectures, we know that if
317
$\{u_1,\ldots,u_n\}$ is a basis for $\mathbb{R}^n$ and
318
$T:\mathbb{R}^n\to\mathbb{R}^n$ is defined so that $T(u_i)=v_i$ for
319
$i=1,\ldots,n$ then the corresponding matrix for $T$ is given by
320
$VU^{-1}$, where $V=[v_i]$ and $U=[u_i]$.
321
322
In this case, we have that $T(v)=v$ and $T(1,0,1)=(0,0,0)$ and
323
$T(0,1,1)=(0,0,0)$. The corresponding matrix is
324
\[
325
A=
326
\begin{bmatrix}
327
1 & 0 & 0 \\
328
1 & 0 & 0 \\
329
-1 & 0 & 0
330
\end{bmatrix}
331
\begin{bmatrix}
332
1 & 1 & 0 \\
333
1 & 0 & 1 \\
334
-1 & 1 & 1
335
\end{bmatrix}^{-1}.
336
\]
337
\end{solution}
338
\vfill
339
\vfill
340
\vfill
341
\vfill
342
\end{parts}
343
344
\newpage
345
346
\question
347
Let $T:\mathbb{R}^4 \to \mathbb{R}^3$ be the linear transform defined by
348
$T(x)=Ax$, where $A$ and its reduced echelon form are defined as follows:
349
\[
350
A=
351
\begin{bmatrix}
352
1 & 2 & -1 & -3 \\
353
2 & 4 & 0 & -4 \\
354
3 & 6 & -1 & -7
355
\end{bmatrix}
356
\sim
357
\begin{bmatrix}
358
1 & 2 & 0 & -2 \\
359
0 & 0 & 1 & 1 \\
360
0 & 0 & 0 & 0
361
\end{bmatrix}
362
= B.
363
\]
364
To save time when writing the solutions, let's denote the columns of $A$ by
365
$a_1,a_2,a_3,a_4$.
366
\begin{parts}
367
\part[3]
368
What is a basis for $\row(A)$?
369
\begin{solution}
370
A basis for $\row(A)$ is given by the 2 nonzero rows of $B$.
371
\end{solution}
372
\vfill
373
\part[3]
374
What a basis for the range of $T$?
375
\begin{solution}
376
A basis for the range is given by $\{a_1,a_3\}$.
377
\end{solution}
378
\vfill
379
\part[3]
380
Write the columns of $A$ corresponding to free variables as a linear
381
combination of pivot columns of $A$.
382
\begin{solution}
383
Relations among the columns of $A$ are exactly the relations among
384
the columns of $B$. This means
385
\[
386
a_2 = 2 a_1 \quad \text{and} \quad a_4 = -2a_1 + a_3.
387
\]
388
\end{solution}
389
\vfill
390
\part[3]
391
What is a basis for $\ker(T)$?
392
\begin{solution}
393
The general solution to $A$ is $x=s_1(-2,1,0,0)+s_2(2,0,-1,1)$.
394
This means that a basis for $\ker(T)$ is
395
$\{(-2,1,0,0),(2,0,-1,1)\}$.
396
\end{solution}
397
\vfill
398
\end{parts}
399
400
\newpage
401
402
\question
403
Let $A$ and $B$ be equivalent matrices given by
404
\[
405
A =
406
\begin{bmatrix}
407
2 & 4 & -1 & -2 \\
408
-1 & -3 & -1 & 0 \\
409
1 & 1 & 2 & 2 \\
410
2 & 6 & 2 & 0
411
\end{bmatrix}
412
\sim
413
\begin{bmatrix}
414
1 & 0 & 0 & 1/2 \\
415
0 & 1 & 0 & -1/2 \\
416
0 & 0 & 1 & 1 \\
417
0 & 0 & 0 & 0
418
\end{bmatrix}
419
= B.
420
\]
421
Let $a_1,a_2,a_3,a_4$ be the columns of $A$. Let $S=\spn(\{a_1,a_2\})$ and
422
$T=\spn(\{a_3,a_4\})$.
423
\begin{parts}
424
\part[2]
425
What is $\dim(\spn(\{a_1,a_2,a_3,a_4\}))$?
426
\begin{solution}
427
This is asking for the rank of $A$ which is 3 because there are 3
428
nonzero rows of $B$.
429
\end{solution}
430
\vfill
431
\part[2]
432
What is a basis for $\nll(A)$?
433
\begin{solution}
434
The general solution to $A$ is $x=s_1(-1/2,1/2,-1,1)$. This means
435
that a basis for $\nll(A)$ is $\{(-1/2,1/2,-1,1)\}$.
436
\end{solution}
437
\vfill
438
\part[2]
439
Denote that intersection of $S$ and $T$ by $S\cap T$. This is the
440
subspace of vectors that are in $\spn(\{a_1,a_2\})$ \textbf{and} in
441
$\spn(\{a_3,a_4\})$. What is $\dim(S\cap T)$?
442
\begin{solution}
443
We can see that $S$ and $T$ are distinct 2-dimensional spaces in
444
$\col(A)$ which is a 3-dimensional space. This means that the
445
intersection is 1-dimensional. This is the more geometric idea. See
446
the next answer for the more algebraic one.
447
\end{solution}
448
\vfill
449
\part[6]
450
(Hard.) What is a basis for $S\cap T$?
451
\begin{solution}
452
We will investigate what it means for a vector to be in $S\cap T$.
453
Suppose $v\in S\cap T$. This means that we can write $v$ as a
454
linear combination of $a_1,a_2$ and as a linear combination of
455
$a_3,a_4$. So there exists scalar $c_1,c_2,c_3,c_4$ such that
456
\[
457
v=c_1a_1+c_2a_2=c_3a_3+c_4a_4.
458
\]
459
The goal is to determine the constraints on $c_1,c_2,c_3,c_4$. By
460
rearranging, this means that
461
\[
462
c_1a_1+c_2a_2 - c_3a_3 - c_4a_4=0.
463
\]
464
This means that $(c_1,c_2,-c_3,-c_4)\in \nll(A)$. Then
465
$(c_1,c_2,-c_3,-c_4)=s_1(-1/2,1/2,-1,1)$ for some $s_1$. So
466
\begin{equation}
467
\label{a}
468
v=-1/2s_1a_1+1/2s_1a_2
469
\end{equation}
470
for some $s_1$. The equation \eqref{a} characterizes all $v\in S\cap
471
T$. We can see that it is a 1-dimensional space. A basis is
472
obtained by plugging in any nonzero $s_1$ into \eqref{a} so a basis
473
for $S\cap T$ is $\{a_1-a_2\}$.
474
\end{solution}
475
\vfill
476
\vfill
477
\vfill
478
\end{parts}
479
480
\end{questions}
481
482
\end{document}
483
484