kevinlui's site
\documentclass[addpoints]{exam}1\usepackage{amsmath}2\usepackage{amsfonts}3\usepackage{multicol}4\newcommand{\col}{\mathrm{col}}5\newcommand{\nll}{\mathrm{null}}6\newcommand{\row}{\mathrm{row}}7\newcommand{\spn}{\mathrm{span}}8\newcommand{\rank}{\mathrm{rank}}9\newcommand{\nullity}{\mathrm{nullity}}10\newcommand{\range}{\mathrm{range}}1112\printanswers1314\pagestyle{headandfoot}15\runningheadrule16\firstpageheader{}{}{}17\runningheader{Math 308H Winter 2018}18{Final, Page \thepage\ of \numpages}19{2018-03-15}20\firstpagefooter{}{\thepage}{}21\runningfooter{}{\thepage}{}2223\begin{document}2425\begin{center}26Math 308H - Winter 20182728Final29302018-03-1531\end{center}3233\ifprintanswers34\textbf{\huge KEY}35\else36Name: \hrulefill3738Student ID Number: \hrulefill39\fi4041\vspace{0.3cm}4243\begin{center}44\gradetable[v][questions]45\end{center}4647\vspace{0.3cm}4849\begin{itemize}50\item51There are 6 problems on this exam. Be sure you have all 6 problems on52your exam.53\item54The final answer must be left in exact form. Box your final answer.55\item56You are allowed the TI-30XIIS calculator. It is possible to complete57the exam without a calculator.58\item59You are allowed a single sheet of 2-sided handwritten self-written notes.60\item61You must show your work to receive full credit. A correct answer62with no supporting work will receive a zero.63\item64Use the backsides if you need extra space. Make a note of this if you65do.66\item67Do not cheat. This exam should represent your own work. If you are68caught cheating, I will report you to the Community Standards and69Student Conduct office.70\end{itemize}7172\textbf{Conventions}:73\begin{itemize}74\item75I will often denote the zero vector by $0$.76\item77When I define a variable, it is defined for that whole question. The $A$78defined in Question 2 is the same for each part.79\item80I treat row and column vectors as the same.81\item82For any linear transformation $T$, there exists a matrix $A$ such that83$T(x)=Ax$. I defined the determinant, rank, and nullity of $T$ using84$A$. This means,85\[86\det(T)=\det(A), \quad \rank(T)=\rank(A), \quad \nullity(T)=\nullity(A).87\]88\end{itemize}899091\newpage9293\begin{questions}9495% Question 196\question97Give an example of each of the following. If it is not possible, write ``NOT98POSSIBLE''. You do not need to justify your answers.99\begin{parts}100\part[2]101If possible, give an example of a linear system of equations whose102solution space is the $(1,2,3)+s_1(1,0,0)$ line.103\begin{solution}104\[105y=2,\; z=3106\]107\end{solution}108\vfill109\part[2]110If possible, give an example of a $2\times 2$ matrix $A$ such that111$A\neq 0,I$ and $A(A-I)=0$.112\begin{solution}113This means that $A^2=A$ so any projection matrix would work. For114example,115\[116A =117\begin{bmatrix}1181 & 0 \\1190 & 0120\end{bmatrix}.121\]122\end{solution}123\vfill124\part[2]125If possible, give an example of a $2\times 2$ invertible matrix, $A$,126such that $e_1-e_2\notin \col(A)$.127\begin{solution}128NOT POSSIBLE. An invertible matrix must have spanning columns.129\end{solution}130\vfill131\part[2]132If possible, give an example of two invertible $2\times 2$ matrices $A$133and $B$ such that $A+B$ is not invertible.134\begin{solution}135Let $A=-B=I$.136\end{solution}137\vfill138\part[2]139If possible, give an example of two $2\times 2$ matrices $A$ and $B$140that are neither zero nor the identity matrix such that $AB=BA$.141\vfill142\begin{solution}143Take any two diagonal matrices that are not zero or the identity.144\end{solution}145\part[2]146If possible, give an example of two linear transformation147$T:\mathbb{R}^2\to\mathbb{R}^2$ and $S:\mathbb{R}^2\to\mathbb{R}^2$148such that $2$ is an eigenvalue of $T$ and $3$ is an eigenvalue of $S$149but $6$ is not an eigenvalue of $T\circ S$.150\begin{solution}151$T(x,y)=(2x,0)$, $S(x,y)=(0,3y)$.152\end{solution}153\vfill154\end{parts}155156\newpage157% Question 2158\question159\begin{parts}160\part[6]161Let162\[163A =164\begin{bmatrix}1651 & -3 \\1660 & 2167\end{bmatrix}.168\]169\begin{enumerate}170\item171What is the characteristic polynomial of $A^{-1}$?172\begin{solution}173$(1-\lambda)(1/2-\lambda)$.174\end{solution}175\vfill176\item177The matrix $A$ is diagonalizable so it can be written as178$A=UDU^{-1}$. What is $U$ and $D$?179\begin{solution}180\[181U =182\begin{bmatrix}1831 & 3 \\1840 & -1185\end{bmatrix}186\quad187D =188\begin{bmatrix}1891 & 0 \\1900 & 2191\end{bmatrix}192\]193\end{solution}194\vfill195\vfill196\vfill197\end{enumerate}198\part[6]199Let200\[201B =202\begin{bmatrix}2034 & 0 & 2 \\2040 & 1 & 2 \\2050 & 2 & 4206\end{bmatrix}.207\]208\begin{enumerate}209\item210What is the reduced echelon form of $B$?211\begin{solution}212\[213\begin{bmatrix}2141 & 0 & 1/2 \\2150 & 1 & 2 \\2160 & 0 & 0217\end{bmatrix}218\]219\end{solution}220\vfill221\vfill222\item223What is the general solution to $Bx=(6,3,6)$?224\begin{solution}225\[226(1,1,1)+s_1(-1/2,-2,1).227\]228\end{solution}229\vfill230\vfill231\end{enumerate}232\end{parts}233234\newpage235% Question 3236\question237238Let $A$ and $B$ be equivalent matrices defined by239\[240A =241\begin{bmatrix}2421 & 2 & 0 & -1 \\2430 & 1 & 0 & 3 \\2440 & 1 & 1 & 0 \\2452 & 5 & 0 & 1246\end{bmatrix}247\sim248\begin{bmatrix}2491 & 0 & 0 & -7 \\2500 & 1 & 0 & 3 \\2510 & 0 & 1 & -3 \\2520 & 0 & 0 & 0253\end{bmatrix}254=B255\]256Let $a_1,a_2,a_3,a_4$ denote the columns of $A$.257\begin{parts}258\part[3]259Do not write express a basis as a matrix.260\begin{enumerate}261\item262Give a basis for $\col(2A^t)$.263\begin{solution}264The first thing to note that is $\col(2A^t)=\row(A)$. A265basis is then266\[267\{(1,0,0,-7),(0,1,0,3),(0,0,1,-3)\}268\]269\end{solution}270\vfill271\item272Give a basis for $\nll(A)$.273\begin{solution}274\[275\{(7,-3,3,1)\}276\]277\end{solution}278\vfill279\item280Give a basis for $\row(A)$.281\begin{solution}282\[283\{(1,0,0,-7),(0,1,0,3),(0,0,1,-3)\}284\]285\end{solution}286\vfill287\end{enumerate}288\part[3]289These should be quick questions.290\begin{enumerate}291\item292What is $\rank(A)$?293\begin{solution}2943295\end{solution}296\vfill297\item298What is $\nullity(A^{t} D^{-1})$, where $D$ is the $4\times 4$ diagonal299matrix consisting of $1,2,3,4$ along the diagonal.300\begin{solution}3011302\end{solution}303\vfill304\item305What is $\det(2A)$?306\begin{solution}3070308\end{solution}309\vfill310\end{enumerate}311\part[3]312Give a nontrivial linear combination of the columns of $A$ that sum to313zero. You may use $a_1,a_2,a_3,a_4$ to denote the columns of $A$.314\begin{solution}315$7a_1-3a_2+3a_3+a_4=0$.316\end{solution}317\vfill318\vfill319\part[3]320Let $C$ be the $4\times 3$ matrix given by $C = [a_1 \; a_2 \; a_3]$.321So $C$ is the submatrix of $A$ consisting of the first 3 columns. Give322the general solution for $Cx=a_1+a_4$.323\begin{solution}324From the previous part, we know that $a_4=-7a_1+3a_2-3a_3$. This325means that $a_1+a_4=-6a_1+3a_2-3a_3$. The general solution is then326\[327x=(-6,3,-3).328\]329There is no homogenous part because the columns of $C$ are linearly330independent.331\end{solution}332\vfill333\vfill334\end{parts}335336\newpage337% Question 4338\question339Let $T:\mathbb{R}^4\to\mathbb{R}^3$ be the linear transformation defined by340\[341T(w,x,y,z)=(w+y+z,x+y+z,x+y+z).342\]343\begin{parts}344\part[3]345There is a matrix $A$ such that $T(x)=Ax$. What is $A$?346\begin{solution}347\[348A =349\begin{bmatrix}3501 & 0 & 1 & 1\\3510 & 1 & 1 & 1\\3520 & 1 & 1 & 1353\end{bmatrix}354\]355\end{solution}356\vfill357\part[3]358Let $v=(0,3,0,8)$. Give the general solution to $Ax=2Av+(2,1,1)$.359\begin{solution}360A particular solution to $Ax=2Av$ is $x=2v$. A particular solution361to $Ax=(2,1,1)$ is $(2,1,0)$. The general solution to the362homogenous system $Ax=0$ is $s_1(-1,-1,1,0)+s_2(-1,-1,0,1)$. The363general solutin to $Ax=2Av=(2,1,1)$ is then364\[3652v+(2,1,0)+s_1(-1,-1,1,0)+s_2(-1,-1,0,1).366\]367\end{solution}368\vfill369\vfill370\part[3]371Does there exists a rank 2 linear transformation $S$ such that $T\circ372S$ is the zero transformation? If so, give an example. If not, why not?373\begin{solution}374Yes. If $T\circ S=0$ then $\range(S)\subseteq \ker(T)$. We know a375basis for $\ker(T)$ so define376\[377S(x) =378\begin{bmatrix}379-1 & -1 \\380-1 & -1 \\3811 & 0 \\3820 & 1383\end{bmatrix}x.384\]385\end{solution}386\vfill387\part[3]388Does there exists a rank 3 linear transformation $S$ such that $T\circ389S$ is the zero transformation? If so, give an example. If not, why not?390\begin{solution}391No. If $\range(S)\subseteq \ker(T)$, then $\rank(S)\leq392\nullity(T)$.393\end{solution}394\vfill395\end{parts}396397\newpage398% Question 5399\question400Let401\[402A =403\begin{bmatrix}4040 & -1 & \frac{37}{3} & -\frac{253}{15} \\4050 & 2 & 0 & -\frac{1}{5} \\4060 & 0 & 2 & \frac{7}{5} \\4070 & 0 & 0 & 3408\end{bmatrix}409\]410be a matrix which decomposes as $A=UDU^{-1}$, where411\[412U =413\begin{bmatrix}4141 & -1 & 18 & 1 \\4150 & 2 & 1 & -1 \\4160 & 0 & 3 & 7 \\4170 & 0 & 0 & 5418\end{bmatrix},419\quad420D =421\begin{bmatrix}4220 & 0 & 0 & 0 \\4230 & 2 & 0 & 0 \\4240 & 0 & 2 & 0 \\4250 & 0 & 0 & 3426\end{bmatrix}.427\]428Let $u_1,u_2,u_3,u_4$ be the columns of $U$ and429$\mathcal{B}=\{u_1,u_2,u_3,u_4\}$.430\begin{parts}431\part[6]432Fill out this table.433\ifprintanswers434\begin{center}435\begin{tabular}{|l|l|l|l|}436\hline437Eigenvalue $\lambda$ & Alg. Multiplicity of $\lambda$ &438Geo. Multiplicity of $\lambda$ & Basis for $E_\lambda$ \\439\hline4400 & 1 & 1 & $\{u_1\}$\\[10ex]441\hline4422 & 2 & 2 & $\{u_2,u_3\}$\\[10ex]443\hline4443 & 1 & 1 & $\{u_4\}$\\[10ex]445\hline446\end{tabular}447\end{center}448\else449\begin{center}450\begin{tabular}{|l|l|l|l|}451\hline452Eigenvalue $\lambda$ & Alg. Multiplicity of $\lambda$ &453Geo. Multiplicity of $\lambda$ & Basis for $E_\lambda$ \\454\hline455& & & \\[10ex]456\hline457& & & \\[10ex]458\hline459& & & \\[10ex]460\hline461\end{tabular}462\end{center}463\fi464\part[3]465Let $x=u_1+u_2+u_3+u_4$. Express $A^{18}x$ as a linear combination of466$u_1,u_2,u_3,u_4$. You are allowed to have exponents of numbers in your467answer. (Hint: $x$ has been expressed as the sum of eigenvectors.)468\begin{solution}469$2^{18}u_2+2^{18}u_3+3^{18}u_4$.470\end{solution}471\vfill472\part[3]473What are the eigenvalues for $A^2-2A$?474\begin{solution}475$0,3$476\end{solution}477\vfill478\end{parts}479480\newpage481% Question 6482\question483484Let $T(x) = Ax$, where $A$ is as defined in Question 5. Let485$u_1,u_2,u_3,u_4$ also be as defined in Question 5.486\begin{parts}487\part[4]488Give two vectors $v,w$ such that the triangle with vertices489$\{T(0),T(v),T(w)\}$ has 6 times the area as the triangle with vertices490$\{0,v,w\}$. Be sure to justify your answer. (Hint: It is unnecessary491to compute the area of these triangles.)492\begin{solution}493Let $v=u_2$ and $w=u_4$. Then $T(u_2)=2u_2$ and $T(u_4)=3u_4$. So494the area of the triangle increased by a factor of 6.495\end{solution}496\vfill497\part[4]498Find a basis for each of the following subspaces. If a subspace is499trivial, then write $\emptyset$ for its basis.500\begin{itemize}501\item502$\nll(A-2I)$503\begin{solution}504This is a basis for the eigenspace corresponding to 2,505$\{u_2,u_3\}$.506\end{solution}507\vfill508\item509$\nll(A^2-3I)$.510\begin{solution}511Since $3$ is not an eigenvalue of $A^2$, this subspace is512trivial so a basis is $\emptyset$.513\end{solution}514\vfill515\end{itemize}516\part[4]517Let $B=\{u_1,u_2,u_3,u_4\}$ be a basis.518\begin{itemize}519\item520What is the general solution to $Ax=u_2+2u_3$?521\begin{solution}522\[523x=(1/2u_2+u_3)+s_1(u_1)524\]525\end{solution}526\vfill527\item528Let $y$ be a particular solution to the above linear system.529What is $[y]_B$?530\begin{solution}531\[532(0,1/2,1,0)533\]534\end{solution}535\vfill536\end{itemize}537\end{parts}538\end{questions}539\end{document}540541542