Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

kevinlui's site

7239 views
1
\documentclass[addpoints]{exam}
2
\usepackage{amsmath}
3
\usepackage{amsfonts}
4
\usepackage{multicol}
5
\newcommand{\col}{\mathrm{col}}
6
\newcommand{\nll}{\mathrm{null}}
7
\newcommand{\row}{\mathrm{row}}
8
\newcommand{\spn}{\mathrm{span}}
9
\newcommand{\rank}{\mathrm{rank}}
10
\newcommand{\nullity}{\mathrm{nullity}}
11
\newcommand{\range}{\mathrm{range}}
12
13
\printanswers
14
15
\pagestyle{headandfoot}
16
\runningheadrule
17
\firstpageheader{}{}{}
18
\runningheader{Math 308H Winter 2018}
19
{Final, Page \thepage\ of \numpages}
20
{2018-03-15}
21
\firstpagefooter{}{\thepage}{}
22
\runningfooter{}{\thepage}{}
23
24
\begin{document}
25
26
\begin{center}
27
Math 308H - Winter 2018
28
29
Final
30
31
2018-03-15
32
\end{center}
33
34
\ifprintanswers
35
\textbf{\huge KEY}
36
\else
37
Name: \hrulefill
38
39
Student ID Number: \hrulefill
40
\fi
41
42
\vspace{0.3cm}
43
44
\begin{center}
45
\gradetable[v][questions]
46
\end{center}
47
48
\vspace{0.3cm}
49
50
\begin{itemize}
51
\item
52
There are 6 problems on this exam. Be sure you have all 6 problems on
53
your exam.
54
\item
55
The final answer must be left in exact form. Box your final answer.
56
\item
57
You are allowed the TI-30XIIS calculator. It is possible to complete
58
the exam without a calculator.
59
\item
60
You are allowed a single sheet of 2-sided handwritten self-written notes.
61
\item
62
You must show your work to receive full credit. A correct answer
63
with no supporting work will receive a zero.
64
\item
65
Use the backsides if you need extra space. Make a note of this if you
66
do.
67
\item
68
Do not cheat. This exam should represent your own work. If you are
69
caught cheating, I will report you to the Community Standards and
70
Student Conduct office.
71
\end{itemize}
72
73
\textbf{Conventions}:
74
\begin{itemize}
75
\item
76
I will often denote the zero vector by $0$.
77
\item
78
When I define a variable, it is defined for that whole question. The $A$
79
defined in Question 2 is the same for each part.
80
\item
81
I treat row and column vectors as the same.
82
\item
83
For any linear transformation $T$, there exists a matrix $A$ such that
84
$T(x)=Ax$. I defined the determinant, rank, and nullity of $T$ using
85
$A$. This means,
86
\[
87
\det(T)=\det(A), \quad \rank(T)=\rank(A), \quad \nullity(T)=\nullity(A).
88
\]
89
\end{itemize}
90
91
92
\newpage
93
94
\begin{questions}
95
96
% Question 1
97
\question
98
Give an example of each of the following. If it is not possible, write ``NOT
99
POSSIBLE''. You do not need to justify your answers.
100
\begin{parts}
101
\part[2]
102
If possible, give an example of a linear system of equations whose
103
solution space is the $(1,2,3)+s_1(1,0,0)$ line.
104
\begin{solution}
105
\[
106
y=2,\; z=3
107
\]
108
\end{solution}
109
\vfill
110
\part[2]
111
If possible, give an example of a $2\times 2$ matrix $A$ such that
112
$A\neq 0,I$ and $A(A-I)=0$.
113
\begin{solution}
114
This means that $A^2=A$ so any projection matrix would work. For
115
example,
116
\[
117
A =
118
\begin{bmatrix}
119
1 & 0 \\
120
0 & 0
121
\end{bmatrix}.
122
\]
123
\end{solution}
124
\vfill
125
\part[2]
126
If possible, give an example of a $2\times 2$ invertible matrix, $A$,
127
such that $e_1-e_2\notin \col(A)$.
128
\begin{solution}
129
NOT POSSIBLE. An invertible matrix must have spanning columns.
130
\end{solution}
131
\vfill
132
\part[2]
133
If possible, give an example of two invertible $2\times 2$ matrices $A$
134
and $B$ such that $A+B$ is not invertible.
135
\begin{solution}
136
Let $A=-B=I$.
137
\end{solution}
138
\vfill
139
\part[2]
140
If possible, give an example of two $2\times 2$ matrices $A$ and $B$
141
that are neither zero nor the identity matrix such that $AB=BA$.
142
\vfill
143
\begin{solution}
144
Take any two diagonal matrices that are not zero or the identity.
145
\end{solution}
146
\part[2]
147
If possible, give an example of two linear transformation
148
$T:\mathbb{R}^2\to\mathbb{R}^2$ and $S:\mathbb{R}^2\to\mathbb{R}^2$
149
such that $2$ is an eigenvalue of $T$ and $3$ is an eigenvalue of $S$
150
but $6$ is not an eigenvalue of $T\circ S$.
151
\begin{solution}
152
$T(x,y)=(2x,0)$, $S(x,y)=(0,3y)$.
153
\end{solution}
154
\vfill
155
\end{parts}
156
157
\newpage
158
% Question 2
159
\question
160
\begin{parts}
161
\part[6]
162
Let
163
\[
164
A =
165
\begin{bmatrix}
166
1 & -3 \\
167
0 & 2
168
\end{bmatrix}.
169
\]
170
\begin{enumerate}
171
\item
172
What is the characteristic polynomial of $A^{-1}$?
173
\begin{solution}
174
$(1-\lambda)(1/2-\lambda)$.
175
\end{solution}
176
\vfill
177
\item
178
The matrix $A$ is diagonalizable so it can be written as
179
$A=UDU^{-1}$. What is $U$ and $D$?
180
\begin{solution}
181
\[
182
U =
183
\begin{bmatrix}
184
1 & 3 \\
185
0 & -1
186
\end{bmatrix}
187
\quad
188
D =
189
\begin{bmatrix}
190
1 & 0 \\
191
0 & 2
192
\end{bmatrix}
193
\]
194
\end{solution}
195
\vfill
196
\vfill
197
\vfill
198
\end{enumerate}
199
\part[6]
200
Let
201
\[
202
B =
203
\begin{bmatrix}
204
4 & 0 & 2 \\
205
0 & 1 & 2 \\
206
0 & 2 & 4
207
\end{bmatrix}.
208
\]
209
\begin{enumerate}
210
\item
211
What is the reduced echelon form of $B$?
212
\begin{solution}
213
\[
214
\begin{bmatrix}
215
1 & 0 & 1/2 \\
216
0 & 1 & 2 \\
217
0 & 0 & 0
218
\end{bmatrix}
219
\]
220
\end{solution}
221
\vfill
222
\vfill
223
\item
224
What is the general solution to $Bx=(6,3,6)$?
225
\begin{solution}
226
\[
227
(1,1,1)+s_1(-1/2,-2,1).
228
\]
229
\end{solution}
230
\vfill
231
\vfill
232
\end{enumerate}
233
\end{parts}
234
235
\newpage
236
% Question 3
237
\question
238
239
Let $A$ and $B$ be equivalent matrices defined by
240
\[
241
A =
242
\begin{bmatrix}
243
1 & 2 & 0 & -1 \\
244
0 & 1 & 0 & 3 \\
245
0 & 1 & 1 & 0 \\
246
2 & 5 & 0 & 1
247
\end{bmatrix}
248
\sim
249
\begin{bmatrix}
250
1 & 0 & 0 & -7 \\
251
0 & 1 & 0 & 3 \\
252
0 & 0 & 1 & -3 \\
253
0 & 0 & 0 & 0
254
\end{bmatrix}
255
=B
256
\]
257
Let $a_1,a_2,a_3,a_4$ denote the columns of $A$.
258
\begin{parts}
259
\part[3]
260
Do not write express a basis as a matrix.
261
\begin{enumerate}
262
\item
263
Give a basis for $\col(2A^t)$.
264
\begin{solution}
265
The first thing to note that is $\col(2A^t)=\row(A)$. A
266
basis is then
267
\[
268
\{(1,0,0,-7),(0,1,0,3),(0,0,1,-3)\}
269
\]
270
\end{solution}
271
\vfill
272
\item
273
Give a basis for $\nll(A)$.
274
\begin{solution}
275
\[
276
\{(7,-3,3,1)\}
277
\]
278
\end{solution}
279
\vfill
280
\item
281
Give a basis for $\row(A)$.
282
\begin{solution}
283
\[
284
\{(1,0,0,-7),(0,1,0,3),(0,0,1,-3)\}
285
\]
286
\end{solution}
287
\vfill
288
\end{enumerate}
289
\part[3]
290
These should be quick questions.
291
\begin{enumerate}
292
\item
293
What is $\rank(A)$?
294
\begin{solution}
295
3
296
\end{solution}
297
\vfill
298
\item
299
What is $\nullity(A^{t} D^{-1})$, where $D$ is the $4\times 4$ diagonal
300
matrix consisting of $1,2,3,4$ along the diagonal.
301
\begin{solution}
302
1
303
\end{solution}
304
\vfill
305
\item
306
What is $\det(2A)$?
307
\begin{solution}
308
0
309
\end{solution}
310
\vfill
311
\end{enumerate}
312
\part[3]
313
Give a nontrivial linear combination of the columns of $A$ that sum to
314
zero. You may use $a_1,a_2,a_3,a_4$ to denote the columns of $A$.
315
\begin{solution}
316
$7a_1-3a_2+3a_3+a_4=0$.
317
\end{solution}
318
\vfill
319
\vfill
320
\part[3]
321
Let $C$ be the $4\times 3$ matrix given by $C = [a_1 \; a_2 \; a_3]$.
322
So $C$ is the submatrix of $A$ consisting of the first 3 columns. Give
323
the general solution for $Cx=a_1+a_4$.
324
\begin{solution}
325
From the previous part, we know that $a_4=-7a_1+3a_2-3a_3$. This
326
means that $a_1+a_4=-6a_1+3a_2-3a_3$. The general solution is then
327
\[
328
x=(-6,3,-3).
329
\]
330
There is no homogenous part because the columns of $C$ are linearly
331
independent.
332
\end{solution}
333
\vfill
334
\vfill
335
\end{parts}
336
337
\newpage
338
% Question 4
339
\question
340
Let $T:\mathbb{R}^4\to\mathbb{R}^3$ be the linear transformation defined by
341
\[
342
T(w,x,y,z)=(w+y+z,x+y+z,x+y+z).
343
\]
344
\begin{parts}
345
\part[3]
346
There is a matrix $A$ such that $T(x)=Ax$. What is $A$?
347
\begin{solution}
348
\[
349
A =
350
\begin{bmatrix}
351
1 & 0 & 1 & 1\\
352
0 & 1 & 1 & 1\\
353
0 & 1 & 1 & 1
354
\end{bmatrix}
355
\]
356
\end{solution}
357
\vfill
358
\part[3]
359
Let $v=(0,3,0,8)$. Give the general solution to $Ax=2Av+(2,1,1)$.
360
\begin{solution}
361
A particular solution to $Ax=2Av$ is $x=2v$. A particular solution
362
to $Ax=(2,1,1)$ is $(2,1,0)$. The general solution to the
363
homogenous system $Ax=0$ is $s_1(-1,-1,1,0)+s_2(-1,-1,0,1)$. The
364
general solutin to $Ax=2Av=(2,1,1)$ is then
365
\[
366
2v+(2,1,0)+s_1(-1,-1,1,0)+s_2(-1,-1,0,1).
367
\]
368
\end{solution}
369
\vfill
370
\vfill
371
\part[3]
372
Does there exists a rank 2 linear transformation $S$ such that $T\circ
373
S$ is the zero transformation? If so, give an example. If not, why not?
374
\begin{solution}
375
Yes. If $T\circ S=0$ then $\range(S)\subseteq \ker(T)$. We know a
376
basis for $\ker(T)$ so define
377
\[
378
S(x) =
379
\begin{bmatrix}
380
-1 & -1 \\
381
-1 & -1 \\
382
1 & 0 \\
383
0 & 1
384
\end{bmatrix}x.
385
\]
386
\end{solution}
387
\vfill
388
\part[3]
389
Does there exists a rank 3 linear transformation $S$ such that $T\circ
390
S$ is the zero transformation? If so, give an example. If not, why not?
391
\begin{solution}
392
No. If $\range(S)\subseteq \ker(T)$, then $\rank(S)\leq
393
\nullity(T)$.
394
\end{solution}
395
\vfill
396
\end{parts}
397
398
\newpage
399
% Question 5
400
\question
401
Let
402
\[
403
A =
404
\begin{bmatrix}
405
0 & -1 & \frac{37}{3} & -\frac{253}{15} \\
406
0 & 2 & 0 & -\frac{1}{5} \\
407
0 & 0 & 2 & \frac{7}{5} \\
408
0 & 0 & 0 & 3
409
\end{bmatrix}
410
\]
411
be a matrix which decomposes as $A=UDU^{-1}$, where
412
\[
413
U =
414
\begin{bmatrix}
415
1 & -1 & 18 & 1 \\
416
0 & 2 & 1 & -1 \\
417
0 & 0 & 3 & 7 \\
418
0 & 0 & 0 & 5
419
\end{bmatrix},
420
\quad
421
D =
422
\begin{bmatrix}
423
0 & 0 & 0 & 0 \\
424
0 & 2 & 0 & 0 \\
425
0 & 0 & 2 & 0 \\
426
0 & 0 & 0 & 3
427
\end{bmatrix}.
428
\]
429
Let $u_1,u_2,u_3,u_4$ be the columns of $U$ and
430
$\mathcal{B}=\{u_1,u_2,u_3,u_4\}$.
431
\begin{parts}
432
\part[6]
433
Fill out this table.
434
\ifprintanswers
435
\begin{center}
436
\begin{tabular}{|l|l|l|l|}
437
\hline
438
Eigenvalue $\lambda$ & Alg. Multiplicity of $\lambda$ &
439
Geo. Multiplicity of $\lambda$ & Basis for $E_\lambda$ \\
440
\hline
441
0 & 1 & 1 & $\{u_1\}$\\[10ex]
442
\hline
443
2 & 2 & 2 & $\{u_2,u_3\}$\\[10ex]
444
\hline
445
3 & 1 & 1 & $\{u_4\}$\\[10ex]
446
\hline
447
\end{tabular}
448
\end{center}
449
\else
450
\begin{center}
451
\begin{tabular}{|l|l|l|l|}
452
\hline
453
Eigenvalue $\lambda$ & Alg. Multiplicity of $\lambda$ &
454
Geo. Multiplicity of $\lambda$ & Basis for $E_\lambda$ \\
455
\hline
456
& & & \\[10ex]
457
\hline
458
& & & \\[10ex]
459
\hline
460
& & & \\[10ex]
461
\hline
462
\end{tabular}
463
\end{center}
464
\fi
465
\part[3]
466
Let $x=u_1+u_2+u_3+u_4$. Express $A^{18}x$ as a linear combination of
467
$u_1,u_2,u_3,u_4$. You are allowed to have exponents of numbers in your
468
answer. (Hint: $x$ has been expressed as the sum of eigenvectors.)
469
\begin{solution}
470
$2^{18}u_2+2^{18}u_3+3^{18}u_4$.
471
\end{solution}
472
\vfill
473
\part[3]
474
What are the eigenvalues for $A^2-2A$?
475
\begin{solution}
476
$0,3$
477
\end{solution}
478
\vfill
479
\end{parts}
480
481
\newpage
482
% Question 6
483
\question
484
485
Let $T(x) = Ax$, where $A$ is as defined in Question 5. Let
486
$u_1,u_2,u_3,u_4$ also be as defined in Question 5.
487
\begin{parts}
488
\part[4]
489
Give two vectors $v,w$ such that the triangle with vertices
490
$\{T(0),T(v),T(w)\}$ has 6 times the area as the triangle with vertices
491
$\{0,v,w\}$. Be sure to justify your answer. (Hint: It is unnecessary
492
to compute the area of these triangles.)
493
\begin{solution}
494
Let $v=u_2$ and $w=u_4$. Then $T(u_2)=2u_2$ and $T(u_4)=3u_4$. So
495
the area of the triangle increased by a factor of 6.
496
\end{solution}
497
\vfill
498
\part[4]
499
Find a basis for each of the following subspaces. If a subspace is
500
trivial, then write $\emptyset$ for its basis.
501
\begin{itemize}
502
\item
503
$\nll(A-2I)$
504
\begin{solution}
505
This is a basis for the eigenspace corresponding to 2,
506
$\{u_2,u_3\}$.
507
\end{solution}
508
\vfill
509
\item
510
$\nll(A^2-3I)$.
511
\begin{solution}
512
Since $3$ is not an eigenvalue of $A^2$, this subspace is
513
trivial so a basis is $\emptyset$.
514
\end{solution}
515
\vfill
516
\end{itemize}
517
\part[4]
518
Let $B=\{u_1,u_2,u_3,u_4\}$ be a basis.
519
\begin{itemize}
520
\item
521
What is the general solution to $Ax=u_2+2u_3$?
522
\begin{solution}
523
\[
524
x=(1/2u_2+u_3)+s_1(u_1)
525
\]
526
\end{solution}
527
\vfill
528
\item
529
Let $y$ be a particular solution to the above linear system.
530
What is $[y]_B$?
531
\begin{solution}
532
\[
533
(0,1/2,1,0)
534
\]
535
\end{solution}
536
\vfill
537
\end{itemize}
538
\end{parts}
539
\end{questions}
540
\end{document}
541
542