January 8
2.1 Vectors
A vector is a list of number with addition and scalar multiplication defined. Given vectors u=(u1,u2,…,un)∈Rn, v=(v1,v2,…,vn)∈Rn of equal dimension and a scalar c∈R, we define
addition: u+v=(u1+v1,u2+v2,…,un+vn),
scalar multiplication: cu=(cu1,cu2,…,cun).
go over the geometry in class. tail to tip, parallelogram
Let a,b be scalars and u,v,w∈Rn. Then
u+v=v+u,
a(u+v)=au+av,
(a+b)u=au+bu,
(u+v)+w=u+(v+w),
a(bu)=(ab)u,
u+(−u)=0,
u+0=0+u=u,
1u=u.
Definition: The If u1,u2,…,um are vectors and c1,c2,…,cm are scalars, then c1u1+c2u2+…+cmum is a linear combination of u1,…,um. Note that the constants can be negative or zero.