Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

kevinlui's site

7239 views

January 8

2.1 Vectors

A vector is a list of number with addition and scalar multiplication defined. Given vectors u=(u1,u2,,un)Rnu=(u_1, u_2, \ldots, u_n)\in \mathbb{R}^n, v=(v1,v2,,vn)Rnv=(v_1,v_2,\ldots,v_n)\in \mathbb{R}^n of equal dimension and a scalar cRc\in \mathbb{R}, we define

  • addition: u+v=(u1+v1,u2+v2,,un+vn)u+v=(u_1+v_1, u_2+v_2, \ldots, u_n+v_n),

  • scalar multiplication: cu=(cu1,cu2,,cun)cu=(cu_1,cu_2,\ldots,cu_n).

go over the geometry in class. tail to tip, parallelogram

Let a,ba,b be scalars and u,v,wRnu,v,w\in \mathbb{R}^n. Then

  • u+v=v+uu+v=v+u,

  • a(u+v)=au+ava(u+v)=au+av,

  • (a+b)u=au+bu(a+b)u=au+bu,

  • (u+v)+w=u+(v+w)(u+v)+w = u+(v+w),

  • a(bu)=(ab)ua(bu)=(ab)u,

  • u+(u)=0u+(-u)=0,

  • u+0=0+u=uu+0=0+u=u,

  • 1u=u1u=u.

Definition: The If u1,u2,,umu_1,u_2,\ldots,u_m are vectors and c1,c2,,cmc_1,c_2,\ldots,c_m are scalars, then c1u1+c2u2++cmum c_1u_1+c_2u_2+\ldots+c_mu_m is a linear combination of u1,,umu_1,\ldots,u_m. Note that the constants can be negative or zero.