Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
"Guiding Future STEM Leaders through Innovative Research Training" ~ thinkingbeyond.education
Project: stephanie's main branch
Path: ThinkingBeyond Activities / BeyondAI-2024-Mentee-Projects / nafiul / Diabetic_Retinopathy_Detection_Using_CNN.ipynb
Views: 1086Image: ubuntu2204
Kernel: Python 3
Vision Transformer Code: https://colab.research.google.com/drive/1UD_bybmnndzhi-tvuaqvHNHP5RWIq5zY?usp=sharing
In [ ]:
In [ ]:
Downloading from https://www.kaggle.com/api/v1/datasets/download/sovitrath/diabetic-retinopathy-224x224-2019-data?dataset_version_number=4...
100%|██████████| 238M/238M [00:02<00:00, 95.5MB/s]
Extracting files...
Path to dataset files: /root/.cache/kagglehub/datasets/sovitrath/diabetic-retinopathy-224x224-2019-data/versions/4
In [ ]:
In [ ]:
type
No_DR 1263
Moderate 699
Mild 258
Proliferate_DR 207
Severe 135
Name: count, dtype: int64
In [ ]:
In [ ]:
Contents of .\dataset/train:
.\dataset/train: 0 files
.\dataset/train/Moderate: 699 files
.\dataset/train/Mild: 258 files
.\dataset/train/Severe: 135 files
.\dataset/train/Proliferate_DR: 207 files
.\dataset/train/No_DR: 1263 files
Contents of .\dataset/val:
.\dataset/val: 0 files
.\dataset/val/Moderate: 150 files
.\dataset/val/Mild: 56 files
.\dataset/val/Severe: 29 files
.\dataset/val/Proliferate_DR: 44 files
.\dataset/val/No_DR: 271 files
Contents of .\dataset/test:
.\dataset/test: 0 files
.\dataset/test/Moderate: 150 files
.\dataset/test/Mild: 56 files
.\dataset/test/Severe: 29 files
.\dataset/test/Proliferate_DR: 44 files
.\dataset/test/No_DR: 271 files
In [ ]:
Found 2562 images belonging to 5 classes.
Found 550 images belonging to 5 classes.
Found 550 images belonging to 5 classes.
In [ ]:
/usr/local/lib/python3.10/dist-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.
super().__init__(activity_regularizer=activity_regularizer, **kwargs)
Epoch 1/10
/usr/local/lib/python3.10/dist-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:122: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.
self._warn_if_super_not_called()
81/81 ━━━━━━━━━━━━━━━━━━━━ 101s 1s/step - accuracy: 0.4029 - loss: 1.5315 - val_accuracy: 0.5673 - val_loss: 1.5060
Epoch 2/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 145s 1s/step - accuracy: 0.6735 - loss: 0.9081 - val_accuracy: 0.6727 - val_loss: 1.3945
Epoch 3/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 139s 1s/step - accuracy: 0.7026 - loss: 0.8166 - val_accuracy: 0.6945 - val_loss: 1.2591
Epoch 4/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 142s 1s/step - accuracy: 0.7062 - loss: 0.8137 - val_accuracy: 0.6855 - val_loss: 1.1358
Epoch 5/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 144s 1s/step - accuracy: 0.7130 - loss: 0.7965 - val_accuracy: 0.7127 - val_loss: 0.9882
Epoch 6/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 139s 1s/step - accuracy: 0.7532 - loss: 0.7223 - val_accuracy: 0.7327 - val_loss: 0.8859
Epoch 7/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 144s 1s/step - accuracy: 0.7584 - loss: 0.7100 - val_accuracy: 0.7382 - val_loss: 0.8226
Epoch 8/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 94s 1s/step - accuracy: 0.7351 - loss: 0.7226 - val_accuracy: 0.7327 - val_loss: 0.7908
Epoch 9/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 143s 1s/step - accuracy: 0.7378 - loss: 0.7089 - val_accuracy: 0.7545 - val_loss: 0.7670
Epoch 10/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 140s 1s/step - accuracy: 0.7330 - loss: 0.7138 - val_accuracy: 0.7545 - val_loss: 0.7665
In [ ]:
Epoch 1/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 440ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 107s 1s/step - accuracy: 0.8073 - loss: 0.5413 - val_accuracy: 0.7327 - val_loss: 0.7587
Epoch 2/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 418ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 138s 1s/step - accuracy: 0.8078 - loss: 0.5459 - val_accuracy: 0.7400 - val_loss: 0.7507
Epoch 3/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 327ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 141s 1s/step - accuracy: 0.8205 - loss: 0.5216 - val_accuracy: 0.7327 - val_loss: 0.7526
Epoch 4/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 320ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 104s 1s/step - accuracy: 0.8220 - loss: 0.5207 - val_accuracy: 0.7327 - val_loss: 0.7552
Epoch 5/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 332ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 102s 1s/step - accuracy: 0.8213 - loss: 0.5000 - val_accuracy: 0.7364 - val_loss: 0.7481
Epoch 6/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 316ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 107s 1s/step - accuracy: 0.8227 - loss: 0.5007 - val_accuracy: 0.7400 - val_loss: 0.7574
Epoch 7/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 429ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 101s 1s/step - accuracy: 0.8283 - loss: 0.4953 - val_accuracy: 0.7364 - val_loss: 0.7528
Epoch 8/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 324ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 144s 1s/step - accuracy: 0.8353 - loss: 0.4914 - val_accuracy: 0.7418 - val_loss: 0.7406
Epoch 9/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 326ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 104s 1s/step - accuracy: 0.8286 - loss: 0.4643 - val_accuracy: 0.7382 - val_loss: 0.7535
Epoch 10/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 322ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 107s 1s/step - accuracy: 0.8268 - loss: 0.4771 - val_accuracy: 0.7436 - val_loss: 0.7535
Epoch 11/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 432ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 101s 1s/step - accuracy: 0.8484 - loss: 0.4625 - val_accuracy: 0.7382 - val_loss: 0.7537
Epoch 12/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 331ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 144s 1s/step - accuracy: 0.8515 - loss: 0.4411 - val_accuracy: 0.7345 - val_loss: 0.7652
Epoch 13/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 322ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 106s 1s/step - accuracy: 0.8459 - loss: 0.4426 - val_accuracy: 0.7364 - val_loss: 0.7536
Epoch 14/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 326ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 111s 1s/step - accuracy: 0.8416 - loss: 0.4430 - val_accuracy: 0.7345 - val_loss: 0.7559
Epoch 15/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 324ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 138s 1s/step - accuracy: 0.8490 - loss: 0.4353 - val_accuracy: 0.7455 - val_loss: 0.7509
Epoch 16/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 436ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 103s 1s/step - accuracy: 0.8572 - loss: 0.4196 - val_accuracy: 0.7400 - val_loss: 0.7536
Epoch 17/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 337ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 145s 1s/step - accuracy: 0.8584 - loss: 0.4279 - val_accuracy: 0.7509 - val_loss: 0.7486
Epoch 18/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 7s 380ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 109s 1s/step - accuracy: 0.8700 - loss: 0.4032 - val_accuracy: 0.7491 - val_loss: 0.7484
Epoch 19/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 317ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 105s 1s/step - accuracy: 0.8678 - loss: 0.4065 - val_accuracy: 0.7436 - val_loss: 0.7501
Epoch 20/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 329ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 141s 1s/step - accuracy: 0.8708 - loss: 0.3996 - val_accuracy: 0.7473 - val_loss: 0.7510
Epoch 21/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 433ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 103s 1s/step - accuracy: 0.8808 - loss: 0.3935 - val_accuracy: 0.7382 - val_loss: 0.7557
Epoch 22/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 434ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 105s 1s/step - accuracy: 0.8671 - loss: 0.4118 - val_accuracy: 0.7400 - val_loss: 0.7632
Epoch 23/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 429ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 102s 1s/step - accuracy: 0.8693 - loss: 0.3885 - val_accuracy: 0.7527 - val_loss: 0.7595
Epoch 24/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 314ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 141s 1s/step - accuracy: 0.8671 - loss: 0.3895 - val_accuracy: 0.7418 - val_loss: 0.7526
Epoch 25/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 433ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 147s 1s/step - accuracy: 0.8796 - loss: 0.3842 - val_accuracy: 0.7364 - val_loss: 0.7678
Epoch 26/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 429ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 139s 1s/step - accuracy: 0.8792 - loss: 0.3600 - val_accuracy: 0.7491 - val_loss: 0.7655
Epoch 27/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 431ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 101s 1s/step - accuracy: 0.8941 - loss: 0.3391 - val_accuracy: 0.7400 - val_loss: 0.7691
Epoch 28/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 321ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 145s 1s/step - accuracy: 0.8877 - loss: 0.3532 - val_accuracy: 0.7418 - val_loss: 0.7658
Epoch 29/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 325ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 102s 1s/step - accuracy: 0.8948 - loss: 0.3400 - val_accuracy: 0.7436 - val_loss: 0.7761
Epoch 30/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 324ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 147s 1s/step - accuracy: 0.8936 - loss: 0.3344 - val_accuracy: 0.7527 - val_loss: 0.7652
Epoch 31/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 320ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 137s 1s/step - accuracy: 0.8954 - loss: 0.3314 - val_accuracy: 0.7327 - val_loss: 0.7747
Epoch 32/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 7s 370ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 108s 1s/step - accuracy: 0.9006 - loss: 0.3306 - val_accuracy: 0.7436 - val_loss: 0.7662
Epoch 33/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 433ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 137s 1s/step - accuracy: 0.8943 - loss: 0.3268 - val_accuracy: 0.7436 - val_loss: 0.7721
Epoch 34/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 314ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 142s 1s/step - accuracy: 0.9086 - loss: 0.3117 - val_accuracy: 0.7436 - val_loss: 0.7863
Epoch 35/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 315ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 100s 1s/step - accuracy: 0.9065 - loss: 0.2979 - val_accuracy: 0.7418 - val_loss: 0.7767
Epoch 36/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 334ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 106s 1s/step - accuracy: 0.9149 - loss: 0.3005 - val_accuracy: 0.7455 - val_loss: 0.7790
Epoch 37/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 431ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 136s 1s/step - accuracy: 0.9074 - loss: 0.2953 - val_accuracy: 0.7364 - val_loss: 0.7779
Epoch 38/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 320ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 143s 1s/step - accuracy: 0.9103 - loss: 0.3055 - val_accuracy: 0.7509 - val_loss: 0.7785
Epoch 39/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 9s 491ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 105s 1s/step - accuracy: 0.9185 - loss: 0.2735 - val_accuracy: 0.7418 - val_loss: 0.7780
Epoch 40/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 422ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 137s 1s/step - accuracy: 0.9141 - loss: 0.2989 - val_accuracy: 0.7364 - val_loss: 0.7859
Epoch 41/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 9s 506ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 102s 1s/step - accuracy: 0.9229 - loss: 0.2660 - val_accuracy: 0.7382 - val_loss: 0.7951
Epoch 42/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 429ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 100s 1s/step - accuracy: 0.9228 - loss: 0.2747 - val_accuracy: 0.7491 - val_loss: 0.7982
Epoch 43/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 422ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 100s 1s/step - accuracy: 0.9129 - loss: 0.2866 - val_accuracy: 0.7345 - val_loss: 0.7970
Epoch 44/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 321ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 145s 1s/step - accuracy: 0.9183 - loss: 0.2825 - val_accuracy: 0.7382 - val_loss: 0.7967
Epoch 45/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 321ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 100s 1s/step - accuracy: 0.9215 - loss: 0.2690 - val_accuracy: 0.7436 - val_loss: 0.7990
Epoch 46/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 317ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 102s 1s/step - accuracy: 0.9264 - loss: 0.2446 - val_accuracy: 0.7364 - val_loss: 0.7988
Epoch 47/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 7s 395ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 143s 1s/step - accuracy: 0.9116 - loss: 0.2727 - val_accuracy: 0.7436 - val_loss: 0.7939
Epoch 48/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 317ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 140s 1s/step - accuracy: 0.9241 - loss: 0.2640 - val_accuracy: 0.7509 - val_loss: 0.7995
Epoch 49/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 10s 537ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 143s 1s/step - accuracy: 0.9366 - loss: 0.2348 - val_accuracy: 0.7545 - val_loss: 0.7973
Epoch 50/50
18/18 ━━━━━━━━━━━━━━━━━━━━ 7s 396ms/step
81/81 ━━━━━━━━━━━━━━━━━━━━ 140s 1s/step - accuracy: 0.9305 - loss: 0.2520 - val_accuracy: 0.7455 - val_loss: 0.7954
In [ ]:
<IPython.core.display.Javascript object>
<IPython.core.display.Javascript object>
<IPython.core.display.Javascript object>
<IPython.core.display.Javascript object>
In [ ]:
In [ ]:
18/18 ━━━━━━━━━━━━━━━━━━━━ 6s 329ms/step - accuracy: 0.7009 - loss: 0.8493
Test Accuracy: 73.82%
In [ ]:
/usr/local/lib/python3.10/dist-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:122: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.
self._warn_if_super_not_called()
18/18 ━━━━━━━━━━━━━━━━━━━━ 8s 435ms/step
In [ ]:
<IPython.core.display.Javascript object>
<IPython.core.display.Javascript object>
In [ ]:
precision recall f1-score support
Mild 0.47 0.50 0.49 56
Moderate 0.60 0.73 0.66 150
No_DR 0.89 0.97 0.93 271
Proliferate_DR 0.33 0.02 0.04 44
Severe 0.60 0.21 0.31 29
accuracy 0.74 550
macro avg 0.58 0.49 0.49 550
weighted avg 0.71 0.74 0.71 550
In [ ]:
<IPython.core.display.Javascript object>
<IPython.core.display.Javascript object>
In [ ]:
1.0
2562
Contents of .\dataset/train:
.\dataset/train: 0 files
.\dataset/train/No_DR: 1263 files
.\dataset/train/DR: 1299 files
Contents of .\dataset/val:
.\dataset/val: 0 files
.\dataset/val/No_DR: 271 files
.\dataset/val/DR: 279 files
Contents of .\dataset/test:
.\dataset/test: 0 files
.\dataset/test/No_DR: 271 files
.\dataset/test/DR: 279 files
Found 2562 images belonging to 2 classes.
Found 550 images belonging to 2 classes.
Found 550 images belonging to 2 classes.
/usr/local/lib/python3.10/dist-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.
super().__init__(activity_regularizer=activity_regularizer, **kwargs)
Epoch 1/10
/usr/local/lib/python3.10/dist-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:122: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.
self._warn_if_super_not_called()
81/81 ━━━━━━━━━━━━━━━━━━━━ 95s 1s/step - accuracy: 0.7844 - loss: 0.4764 - val_accuracy: 0.5073 - val_loss: 0.8788
Epoch 2/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 138s 1s/step - accuracy: 0.9100 - loss: 0.2328 - val_accuracy: 0.5073 - val_loss: 1.0356
Epoch 3/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 87s 1s/step - accuracy: 0.9173 - loss: 0.2120 - val_accuracy: 0.5073 - val_loss: 1.1552
Epoch 4/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 144s 1s/step - accuracy: 0.9285 - loss: 0.1944 - val_accuracy: 0.5109 - val_loss: 0.9722
Epoch 5/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 87s 1s/step - accuracy: 0.9311 - loss: 0.1797 - val_accuracy: 0.5491 - val_loss: 0.6548
Epoch 6/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 143s 1s/step - accuracy: 0.9346 - loss: 0.1593 - val_accuracy: 0.7582 - val_loss: 0.4198
Epoch 7/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 86s 1s/step - accuracy: 0.9482 - loss: 0.1526 - val_accuracy: 0.9164 - val_loss: 0.2454
Epoch 8/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 89s 1s/step - accuracy: 0.9395 - loss: 0.1521 - val_accuracy: 0.9236 - val_loss: 0.1954
Epoch 9/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 87s 1s/step - accuracy: 0.9404 - loss: 0.1574 - val_accuracy: 0.9309 - val_loss: 0.1698
Epoch 10/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 143s 1s/step - accuracy: 0.9452 - loss: 0.1475 - val_accuracy: 0.9327 - val_loss: 0.1669
2.0
1281
Contents of .\dataset/train:
.\dataset/train: 0 files
.\dataset/train/No_DR: 664 files
.\dataset/train/DR: 617 files
Contents of .\dataset/val:
.\dataset/val: 0 files
.\dataset/val/No_DR: 271 files
.\dataset/val/DR: 279 files
Contents of .\dataset/test:
.\dataset/test: 0 files
.\dataset/test/No_DR: 271 files
.\dataset/test/DR: 279 files
Found 1281 images belonging to 2 classes.
Found 550 images belonging to 2 classes.
Found 550 images belonging to 2 classes.
Epoch 1/10
41/41 ━━━━━━━━━━━━━━━━━━━━ 52s 1s/step - accuracy: 0.7730 - loss: 0.4892 - val_accuracy: 0.5073 - val_loss: 0.6800
Epoch 2/10
41/41 ━━━━━━━━━━━━━━━━━━━━ 47s 1s/step - accuracy: 0.8863 - loss: 0.2912 - val_accuracy: 0.5073 - val_loss: 0.6994
Epoch 3/10
41/41 ━━━━━━━━━━━━━━━━━━━━ 51s 1s/step - accuracy: 0.8942 - loss: 0.2338 - val_accuracy: 0.5073 - val_loss: 0.7084
Epoch 4/10
41/41 ━━━━━━━━━━━━━━━━━━━━ 79s 1s/step - accuracy: 0.9099 - loss: 0.2347 - val_accuracy: 0.5073 - val_loss: 0.7110
Epoch 5/10
41/41 ━━━━━━━━━━━━━━━━━━━━ 47s 1s/step - accuracy: 0.9302 - loss: 0.2254 - val_accuracy: 0.5127 - val_loss: 0.6887
Epoch 6/10
41/41 ━━━━━━━━━━━━━━━━━━━━ 52s 1s/step - accuracy: 0.9352 - loss: 0.1886 - val_accuracy: 0.5218 - val_loss: 0.6459
Epoch 7/10
41/41 ━━━━━━━━━━━━━━━━━━━━ 79s 1s/step - accuracy: 0.9431 - loss: 0.1787 - val_accuracy: 0.5327 - val_loss: 0.6414
Epoch 8/10
41/41 ━━━━━━━━━━━━━━━━━━━━ 80s 1s/step - accuracy: 0.9385 - loss: 0.1534 - val_accuracy: 0.5982 - val_loss: 0.5673
Epoch 9/10
41/41 ━━━━━━━━━━━━━━━━━━━━ 82s 1s/step - accuracy: 0.9442 - loss: 0.1668 - val_accuracy: 0.7182 - val_loss: 0.4592
Epoch 10/10
41/41 ━━━━━━━━━━━━━━━━━━━━ 49s 1s/step - accuracy: 0.9510 - loss: 0.1555 - val_accuracy: 0.7745 - val_loss: 0.4030
4.0
641
Contents of .\dataset/train:
.\dataset/train: 0 files
.\dataset/train/No_DR: 335 files
.\dataset/train/DR: 306 files
Contents of .\dataset/val:
.\dataset/val: 0 files
.\dataset/val/No_DR: 271 files
.\dataset/val/DR: 279 files
Contents of .\dataset/test:
.\dataset/test: 0 files
.\dataset/test/No_DR: 271 files
.\dataset/test/DR: 279 files
Found 641 images belonging to 2 classes.
Found 550 images belonging to 2 classes.
Found 550 images belonging to 2 classes.
Epoch 1/10
21/21 ━━━━━━━━━━━━━━━━━━━━ 30s 1s/step - accuracy: 0.6456 - loss: 0.6968 - val_accuracy: 0.6873 - val_loss: 0.6828
Epoch 2/10
21/21 ━━━━━━━━━━━━━━━━━━━━ 27s 1s/step - accuracy: 0.8668 - loss: 0.3267 - val_accuracy: 0.7309 - val_loss: 0.6757
Epoch 3/10
21/21 ━━━━━━━━━━━━━━━━━━━━ 27s 1s/step - accuracy: 0.8835 - loss: 0.2830 - val_accuracy: 0.5982 - val_loss: 0.6689
Epoch 4/10
21/21 ━━━━━━━━━━━━━━━━━━━━ 41s 1s/step - accuracy: 0.8973 - loss: 0.2757 - val_accuracy: 0.5145 - val_loss: 0.6677
Epoch 5/10
21/21 ━━━━━━━━━━━━━━━━━━━━ 41s 1s/step - accuracy: 0.9076 - loss: 0.2304 - val_accuracy: 0.5145 - val_loss: 0.6660
Epoch 6/10
21/21 ━━━━━━━━━━━━━━━━━━━━ 27s 1s/step - accuracy: 0.9293 - loss: 0.1915 - val_accuracy: 0.5145 - val_loss: 0.6673
Epoch 7/10
21/21 ━━━━━━━━━━━━━━━━━━━━ 27s 1s/step - accuracy: 0.9245 - loss: 0.1830 - val_accuracy: 0.5127 - val_loss: 0.6822
Epoch 8/10
21/21 ━━━━━━━━━━━━━━━━━━━━ 27s 1s/step - accuracy: 0.9402 - loss: 0.1654 - val_accuracy: 0.5436 - val_loss: 0.6704
Epoch 9/10
21/21 ━━━━━━━━━━━━━━━━━━━━ 27s 1s/step - accuracy: 0.9411 - loss: 0.1661 - val_accuracy: 0.5455 - val_loss: 0.6825
Epoch 10/10
21/21 ━━━━━━━━━━━━━━━━━━━━ 30s 1s/step - accuracy: 0.9319 - loss: 0.1554 - val_accuracy: 0.5618 - val_loss: 0.6682
8.0
321
Contents of .\dataset/train:
.\dataset/train: 0 files
.\dataset/train/No_DR: 168 files
.\dataset/train/DR: 153 files
Contents of .\dataset/val:
.\dataset/val: 0 files
.\dataset/val/No_DR: 271 files
.\dataset/val/DR: 279 files
Contents of .\dataset/test:
.\dataset/test: 0 files
.\dataset/test/No_DR: 271 files
.\dataset/test/DR: 279 files
Found 321 images belonging to 2 classes.
Found 550 images belonging to 2 classes.
Found 550 images belonging to 2 classes.
Epoch 1/10
11/11 ━━━━━━━━━━━━━━━━━━━━ 19s 1s/step - accuracy: 0.6672 - loss: 0.6967 - val_accuracy: 0.5073 - val_loss: 0.6918
Epoch 2/10
11/11 ━━━━━━━━━━━━━━━━━━━━ 20s 2s/step - accuracy: 0.8493 - loss: 0.3656 - val_accuracy: 0.5073 - val_loss: 0.6956
Epoch 3/10
11/11 ━━━━━━━━━━━━━━━━━━━━ 16s 1s/step - accuracy: 0.8947 - loss: 0.3088 - val_accuracy: 0.5073 - val_loss: 0.7002
Epoch 4/10
11/11 ━━━━━━━━━━━━━━━━━━━━ 16s 1s/step - accuracy: 0.8497 - loss: 0.3160 - val_accuracy: 0.5073 - val_loss: 0.7053
Epoch 5/10
11/11 ━━━━━━━━━━━━━━━━━━━━ 21s 1s/step - accuracy: 0.8942 - loss: 0.2618 - val_accuracy: 0.5073 - val_loss: 0.7103
Epoch 6/10
11/11 ━━━━━━━━━━━━━━━━━━━━ 16s 1s/step - accuracy: 0.9385 - loss: 0.2016 - val_accuracy: 0.5073 - val_loss: 0.7169
Epoch 7/10
11/11 ━━━━━━━━━━━━━━━━━━━━ 21s 2s/step - accuracy: 0.9371 - loss: 0.1914 - val_accuracy: 0.5073 - val_loss: 0.7235
Epoch 8/10
11/11 ━━━━━━━━━━━━━━━━━━━━ 17s 1s/step - accuracy: 0.9385 - loss: 0.1765 - val_accuracy: 0.5073 - val_loss: 0.7315
Epoch 9/10
11/11 ━━━━━━━━━━━━━━━━━━━━ 16s 1s/step - accuracy: 0.9635 - loss: 0.1654 - val_accuracy: 0.5073 - val_loss: 0.7362
Epoch 10/10
11/11 ━━━━━━━━━━━━━━━━━━━━ 16s 1s/step - accuracy: 0.9161 - loss: 0.1862 - val_accuracy: 0.5073 - val_loss: 0.7401
16.0
161
Contents of .\dataset/train:
.\dataset/train: 0 files
.\dataset/train/No_DR: 89 files
.\dataset/train/DR: 72 files
Contents of .\dataset/val:
.\dataset/val: 0 files
.\dataset/val/No_DR: 271 files
.\dataset/val/DR: 279 files
Contents of .\dataset/test:
.\dataset/test: 0 files
.\dataset/test/No_DR: 271 files
.\dataset/test/DR: 279 files
Found 161 images belonging to 2 classes.
Found 550 images belonging to 2 classes.
Found 550 images belonging to 2 classes.
Epoch 1/10
6/6 ━━━━━━━━━━━━━━━━━━━━ 15s 2s/step - accuracy: 0.6488 - loss: 0.7023 - val_accuracy: 0.5691 - val_loss: 0.6915
Epoch 2/10
6/6 ━━━━━━━━━━━━━━━━━━━━ 20s 2s/step - accuracy: 0.7992 - loss: 0.4822 - val_accuracy: 0.5364 - val_loss: 0.6905
Epoch 3/10
6/6 ━━━━━━━━━━━━━━━━━━━━ 20s 2s/step - accuracy: 0.8545 - loss: 0.3240 - val_accuracy: 0.5073 - val_loss: 0.6910
Epoch 4/10
6/6 ━━━━━━━━━━━━━━━━━━━━ 12s 2s/step - accuracy: 0.8747 - loss: 0.3692 - val_accuracy: 0.5073 - val_loss: 0.6940
Epoch 5/10
6/6 ━━━━━━━━━━━━━━━━━━━━ 20s 2s/step - accuracy: 0.9120 - loss: 0.2714 - val_accuracy: 0.5073 - val_loss: 0.6983
Epoch 6/10
6/6 ━━━━━━━━━━━━━━━━━━━━ 21s 2s/step - accuracy: 0.9072 - loss: 0.2942 - val_accuracy: 0.5073 - val_loss: 0.7036
Epoch 7/10
6/6 ━━━━━━━━━━━━━━━━━━━━ 12s 2s/step - accuracy: 0.8756 - loss: 0.2688 - val_accuracy: 0.5073 - val_loss: 0.7078
Epoch 8/10
6/6 ━━━━━━━━━━━━━━━━━━━━ 12s 2s/step - accuracy: 0.9226 - loss: 0.2576 - val_accuracy: 0.5073 - val_loss: 0.7089
Epoch 9/10
6/6 ━━━━━━━━━━━━━━━━━━━━ 20s 2s/step - accuracy: 0.9151 - loss: 0.2522 - val_accuracy: 0.5073 - val_loss: 0.7091
Epoch 10/10
6/6 ━━━━━━━━━━━━━━━━━━━━ 12s 2s/step - accuracy: 0.9447 - loss: 0.2030 - val_accuracy: 0.5073 - val_loss: 0.7103
In [ ]:
In [ ]:
<IPython.core.display.Javascript object>
<IPython.core.display.Javascript object>