Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
"Guiding Future STEM Leaders through Innovative Research Training" ~ thinkingbeyond.education
Project: stephanie's main branch
Path: ThinkingBeyond Activities / BeyondAI-2024-Mentee-Projects / palak-sumayah / Moon_Dataset_(Low_noise).ipynb
Views: 1148Image: ubuntu2204
Kernel: Python 3
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
Evaluating Logistic Regression without outliers...
### Logistic Regression ###
Accuracy: 0.94
F1 Score: 0.94
Recall: 0.93
Precision: 0.96
Training Time: 0.0078 seconds
Evaluating Logistic Regression with outliers...
### Logistic Regression ###
Accuracy: 0.87
F1 Score: 0.87
Recall: 0.79
Precision: 0.97
Training Time: 0.0053 seconds
Evaluating SVM with RBF Kernel without outliers...
### SVM with RBF Kernel ###
Accuracy: 0.95
F1 Score: 0.96
Recall: 0.95
Precision: 0.96
Training Time: 0.1233 seconds
Evaluating SVM with RBF Kernel with outliers...
### SVM with RBF Kernel ###
Accuracy: 0.94
F1 Score: 0.95
Recall: 0.93
Precision: 0.96
Training Time: 0.1549 seconds
Evaluating Decision Tree without outliers...
### Decision Tree ###
Accuracy: 0.83
F1 Score: 0.83
Recall: 0.78
Precision: 0.90
Training Time: 0.0156 seconds
Evaluating Decision Tree with outliers...
### Decision Tree ###
Accuracy: 0.86
F1 Score: 0.87
Recall: 0.85
Precision: 0.89
Training Time: 0.0197 seconds
Evaluating Random Forest without outliers...
### Random Forest ###
Accuracy: 0.95
F1 Score: 0.95
Recall: 0.94
Precision: 0.96
Training Time: 0.4334 seconds
Evaluating Random Forest with outliers...
### Random Forest ###
Accuracy: 0.95
F1 Score: 0.96
Recall: 0.95
Precision: 0.96
Training Time: 0.3818 seconds
Evaluating Gradient Boosting without outliers...
### Gradient Boosting ###
Accuracy: 0.94
F1 Score: 0.95
Recall: 0.93
Precision: 0.97
Training Time: 0.4897 seconds
Evaluating Gradient Boosting with outliers...
### Gradient Boosting ###
Accuracy: 0.94
F1 Score: 0.95
Recall: 0.93
Precision: 0.97
Training Time: 0.5542 seconds
Evaluating Naive Bayes without outliers...
### Naive Bayes ###
Accuracy: 0.89
F1 Score: 0.89
Recall: 0.81
Precision: 0.98
Training Time: 0.0036 seconds
Evaluating Naive Bayes with outliers...
### Naive Bayes ###
Accuracy: 0.72
F1 Score: 0.78
Recall: 0.95
Precision: 0.67
Training Time: 0.0029 seconds
In [ ]:
In [ ]:
In [ ]:
### Metrics Without Outliers ###
Classifier Accuracy F1 Score Recall Precision \
0 Logistic Regression 0.940 0.942857 0.925234 0.961165
1 SVM with RBF Kernel 0.955 0.957746 0.953271 0.962264
2 Decision Tree 0.835 0.834171 0.775701 0.902174
3 Random Forest 0.950 0.952830 0.943925 0.961905
4 Gradient Boosting 0.945 0.947368 0.925234 0.970588
5 Naive Bayes 0.890 0.887755 0.813084 0.977528
Training Time (s)
0 0.007818
1 0.123307
2 0.015565
3 0.433434
4 0.489675
5 0.003552
### Metrics With Outliers ###
Classifier Accuracy F1 Score Recall Precision \
0 Logistic Regression 0.870 0.865979 0.785047 0.965517
1 SVM with RBF Kernel 0.945 0.947867 0.934579 0.961538
2 Decision Tree 0.865 0.870813 0.850467 0.892157
3 Random Forest 0.955 0.957746 0.953271 0.962264
4 Gradient Boosting 0.945 0.947368 0.925234 0.970588
5 Naive Bayes 0.720 0.784615 0.953271 0.666667
Training Time (s)
0 0.005347
1 0.154885
2 0.019695
3 0.381819
4 0.554216
5 0.002920
### Outlier Sensitivity (Difference in Metrics) ###
Classifier Accuracy Change F1 Score Change Recall Change \
0 Logistic Regression -0.070 -0.076878 -0.140187
1 SVM with RBF Kernel -0.010 -0.009879 -0.018692
2 Decision Tree 0.030 0.036643 0.074766
3 Random Forest 0.005 0.004916 0.009346
4 Gradient Boosting 0.000 0.000000 0.000000
5 Naive Bayes -0.170 -0.103140 0.140187
Precision Change Training Time (s)
0 0.004352 0.005347
1 -0.000726 0.154885
2 -0.010017 0.019695
3 0.000359 0.381819
4 0.000000 0.554216
5 -0.310861 0.002920
In [ ]:
### Results in Colab-Friendly Format ###
Metrics Without Outliers:
In [ ]:
Metrics With Outliers:
In [ ]:
Outlier Sensitivity (Change in Metrics):
In [ ]: