Contact Us!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
Avatar for stephanie's main branch.

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download

"Guiding Future STEM Leaders through Innovative Research Training" ~ thinkingbeyond.education

Views: 1172
Image: ubuntu2204
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "dEzTM2gSKrgl"
      },
      "outputs": [],
      "source": [
        "import numpy as np\n",
        "import pandas as pd\n",
        "from sklearn.datasets import make_classification\n",
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.preprocessing import StandardScaler\n",
        "from sklearn.linear_model import LogisticRegression\n",
        "from sklearn.svm import SVC\n",
        "from sklearn.tree import DecisionTreeClassifier\n",
        "from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier\n",
        "from sklearn.naive_bayes import GaussianNB\n",
        "from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score\n",
        "import time\n"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "X, y = make_classification(\n",
        "    n_samples=1000,\n",
        "    n_features=10,\n",
        "    n_informative=5,\n",
        "    n_redundant=2,\n",
        "    n_clusters_per_class=1,\n",
        "    flip_y=0.1,\n",
        "    random_state=42\n",
        ")"
      ],
      "metadata": {
        "id": "aZUHxORgKtlk"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "scaler = StandardScaler()\n",
        "X_scaled = scaler.fit_transform(X)\n"
      ],
      "metadata": {
        "id": "bznsNS_lK8Tg"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)"
      ],
      "metadata": {
        "id": "cfbLwgkyLBMy"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def add_outliers(X, y, outlier_fraction=0.1):\n",
        "    n_outliers = int(outlier_fraction * X.shape[0])\n",
        "    random_state = np.random.RandomState(42)\n",
        "    outliers = random_state.uniform(low=-10, high=10, size=(n_outliers, X.shape[1]))  # Random noise\n",
        "    outlier_labels = random_state.randint(0, 2, size=n_outliers)  # Random binary labels\n",
        "    X_with_outliers = np.vstack([X, outliers])\n",
        "    y_with_outliers = np.hstack([y, outlier_labels])\n",
        "    return X_with_outliers, y_with_outliers\n"
      ],
      "metadata": {
        "id": "RU2MDBXhLGQI"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "X_train_outliers, y_train_outliers = add_outliers(X_train, y_train)\n"
      ],
      "metadata": {
        "id": "9dpJ14J_LMdF"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def evaluate_classifier(name, clf, X_train, y_train, X_test, y_test):\n",
        "    print(f\"### {name} ###\")\n",
        "    start_time = time.time()\n",
        "    clf.fit(X_train, y_train)\n",
        "    train_time = time.time() - start_time\n",
        "    y_pred = clf.predict(X_test)\n",
        "\n",
        "    # Calculate metrics\n",
        "    acc = accuracy_score(y_test, y_pred)\n",
        "    f1 = f1_score(y_test, y_pred)\n",
        "    recall = recall_score(y_test, y_pred)\n",
        "    precision = precision_score(y_test, y_pred)\n",
        "\n",
        "    print(f\"Accuracy: {acc:.2f}\")\n",
        "    print(f\"F1 Score: {f1:.2f}\")\n",
        "    print(f\"Recall: {recall:.2f}\")\n",
        "    print(f\"Precision: {precision:.2f}\")\n",
        "    print(f\"Training Time: {train_time:.4f} seconds\\n\")\n",
        "\n",
        "    return {\n",
        "        \"Classifier\": name,\n",
        "        \"Accuracy\": acc,\n",
        "        \"F1 Score\": f1,\n",
        "        \"Recall\": recall,\n",
        "        \"Precision\": precision,\n",
        "        \"Training Time (s)\": train_time\n",
        "    }"
      ],
      "metadata": {
        "id": "3xQCPmTTLRDi"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "classifiers = [\n",
        "    (\"Logistic Regression\", LogisticRegression(max_iter=1000)),\n",
        "    (\"SVM with RBF Kernel\", SVC(kernel=\"rbf\", probability=True)),\n",
        "    (\"Decision Tree\", DecisionTreeClassifier()),\n",
        "    (\"Random Forest\", RandomForestClassifier()),\n",
        "    (\"Gradient Boosting\", GradientBoostingClassifier()),\n",
        "    (\"Naive Bayes\", GaussianNB())\n",
        "]\n"
      ],
      "metadata": {
        "id": "mqQea0GDLUOq"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "results_no_outliers = []\n",
        "results_with_outliers = []\n",
        "\n",
        "for name, clf in classifiers:\n",
        "    print(f\"Evaluating {name} without outliers...\")\n",
        "    results_no_outliers.append(evaluate_classifier(name, clf, X_train, y_train, X_test, y_test))\n",
        "\n",
        "    print(f\"Evaluating {name} with outliers...\")\n",
        "    results_with_outliers.append(evaluate_classifier(name, clf, X_train_outliers, y_train_outliers, X_test, y_test))"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "DrS1LC-0LXE4",
        "outputId": "5c5f4efa-e729-46cc-bbda-b4dae9727266"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Evaluating Logistic Regression without outliers...\n",
            "### Logistic Regression ###\n",
            "Accuracy: 0.94\n",
            "F1 Score: 0.94\n",
            "Recall: 0.93\n",
            "Precision: 0.96\n",
            "Training Time: 0.0078 seconds\n",
            "\n",
            "Evaluating Logistic Regression with outliers...\n",
            "### Logistic Regression ###\n",
            "Accuracy: 0.87\n",
            "F1 Score: 0.87\n",
            "Recall: 0.79\n",
            "Precision: 0.97\n",
            "Training Time: 0.0053 seconds\n",
            "\n",
            "Evaluating SVM with RBF Kernel without outliers...\n",
            "### SVM with RBF Kernel ###\n",
            "Accuracy: 0.95\n",
            "F1 Score: 0.96\n",
            "Recall: 0.95\n",
            "Precision: 0.96\n",
            "Training Time: 0.1233 seconds\n",
            "\n",
            "Evaluating SVM with RBF Kernel with outliers...\n",
            "### SVM with RBF Kernel ###\n",
            "Accuracy: 0.94\n",
            "F1 Score: 0.95\n",
            "Recall: 0.93\n",
            "Precision: 0.96\n",
            "Training Time: 0.1549 seconds\n",
            "\n",
            "Evaluating Decision Tree without outliers...\n",
            "### Decision Tree ###\n",
            "Accuracy: 0.83\n",
            "F1 Score: 0.83\n",
            "Recall: 0.78\n",
            "Precision: 0.90\n",
            "Training Time: 0.0156 seconds\n",
            "\n",
            "Evaluating Decision Tree with outliers...\n",
            "### Decision Tree ###\n",
            "Accuracy: 0.86\n",
            "F1 Score: 0.87\n",
            "Recall: 0.85\n",
            "Precision: 0.89\n",
            "Training Time: 0.0197 seconds\n",
            "\n",
            "Evaluating Random Forest without outliers...\n",
            "### Random Forest ###\n",
            "Accuracy: 0.95\n",
            "F1 Score: 0.95\n",
            "Recall: 0.94\n",
            "Precision: 0.96\n",
            "Training Time: 0.4334 seconds\n",
            "\n",
            "Evaluating Random Forest with outliers...\n",
            "### Random Forest ###\n",
            "Accuracy: 0.95\n",
            "F1 Score: 0.96\n",
            "Recall: 0.95\n",
            "Precision: 0.96\n",
            "Training Time: 0.3818 seconds\n",
            "\n",
            "Evaluating Gradient Boosting without outliers...\n",
            "### Gradient Boosting ###\n",
            "Accuracy: 0.94\n",
            "F1 Score: 0.95\n",
            "Recall: 0.93\n",
            "Precision: 0.97\n",
            "Training Time: 0.4897 seconds\n",
            "\n",
            "Evaluating Gradient Boosting with outliers...\n",
            "### Gradient Boosting ###\n",
            "Accuracy: 0.94\n",
            "F1 Score: 0.95\n",
            "Recall: 0.93\n",
            "Precision: 0.97\n",
            "Training Time: 0.5542 seconds\n",
            "\n",
            "Evaluating Naive Bayes without outliers...\n",
            "### Naive Bayes ###\n",
            "Accuracy: 0.89\n",
            "F1 Score: 0.89\n",
            "Recall: 0.81\n",
            "Precision: 0.98\n",
            "Training Time: 0.0036 seconds\n",
            "\n",
            "Evaluating Naive Bayes with outliers...\n",
            "### Naive Bayes ###\n",
            "Accuracy: 0.72\n",
            "F1 Score: 0.78\n",
            "Recall: 0.95\n",
            "Precision: 0.67\n",
            "Training Time: 0.0029 seconds\n",
            "\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "df_no_outliers = pd.DataFrame(results_no_outliers)\n",
        "df_with_outliers = pd.DataFrame(results_with_outliers)"
      ],
      "metadata": {
        "id": "vFIaMoaELbJD"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "df_difference = df_with_outliers.copy()\n",
        "df_difference[[\"Accuracy\", \"F1 Score\", \"Recall\", \"Precision\"]] -= df_no_outliers[[\"Accuracy\", \"F1 Score\", \"Recall\", \"Precision\"]]\n",
        "df_difference[\"Classifier\"] = df_no_outliers[\"Classifier\"]\n",
        "df_difference.rename(columns={\"Accuracy\": \"Accuracy Change\", \"F1 Score\": \"F1 Score Change\",\n",
        "                              \"Recall\": \"Recall Change\", \"Precision\": \"Precision Change\"}, inplace=True)\n"
      ],
      "metadata": {
        "id": "ueI1JgpvMUpo"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "print(\"\\n### Metrics Without Outliers ###\\n\")\n",
        "print(df_no_outliers)\n",
        "\n",
        "print(\"\\n### Metrics With Outliers ###\\n\")\n",
        "print(df_with_outliers)\n",
        "\n",
        "print(\"\\n### Outlier Sensitivity (Difference in Metrics) ###\\n\")\n",
        "print(df_difference)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "cEppogmIMXk7",
        "outputId": "1ecbda1e-ac0e-4f94-b616-ae51bd5a35ef"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\n",
            "### Metrics Without Outliers ###\n",
            "\n",
            "            Classifier  Accuracy  F1 Score    Recall  Precision  \\\n",
            "0  Logistic Regression     0.940  0.942857  0.925234   0.961165   \n",
            "1  SVM with RBF Kernel     0.955  0.957746  0.953271   0.962264   \n",
            "2        Decision Tree     0.835  0.834171  0.775701   0.902174   \n",
            "3        Random Forest     0.950  0.952830  0.943925   0.961905   \n",
            "4    Gradient Boosting     0.945  0.947368  0.925234   0.970588   \n",
            "5          Naive Bayes     0.890  0.887755  0.813084   0.977528   \n",
            "\n",
            "   Training Time (s)  \n",
            "0           0.007818  \n",
            "1           0.123307  \n",
            "2           0.015565  \n",
            "3           0.433434  \n",
            "4           0.489675  \n",
            "5           0.003552  \n",
            "\n",
            "### Metrics With Outliers ###\n",
            "\n",
            "            Classifier  Accuracy  F1 Score    Recall  Precision  \\\n",
            "0  Logistic Regression     0.870  0.865979  0.785047   0.965517   \n",
            "1  SVM with RBF Kernel     0.945  0.947867  0.934579   0.961538   \n",
            "2        Decision Tree     0.865  0.870813  0.850467   0.892157   \n",
            "3        Random Forest     0.955  0.957746  0.953271   0.962264   \n",
            "4    Gradient Boosting     0.945  0.947368  0.925234   0.970588   \n",
            "5          Naive Bayes     0.720  0.784615  0.953271   0.666667   \n",
            "\n",
            "   Training Time (s)  \n",
            "0           0.005347  \n",
            "1           0.154885  \n",
            "2           0.019695  \n",
            "3           0.381819  \n",
            "4           0.554216  \n",
            "5           0.002920  \n",
            "\n",
            "### Outlier Sensitivity (Difference in Metrics) ###\n",
            "\n",
            "            Classifier  Accuracy Change  F1 Score Change  Recall Change  \\\n",
            "0  Logistic Regression           -0.070        -0.076878      -0.140187   \n",
            "1  SVM with RBF Kernel           -0.010        -0.009879      -0.018692   \n",
            "2        Decision Tree            0.030         0.036643       0.074766   \n",
            "3        Random Forest            0.005         0.004916       0.009346   \n",
            "4    Gradient Boosting            0.000         0.000000       0.000000   \n",
            "5          Naive Bayes           -0.170        -0.103140       0.140187   \n",
            "\n",
            "   Precision Change  Training Time (s)  \n",
            "0          0.004352           0.005347  \n",
            "1         -0.000726           0.154885  \n",
            "2         -0.010017           0.019695  \n",
            "3          0.000359           0.381819  \n",
            "4          0.000000           0.554216  \n",
            "5         -0.310861           0.002920  \n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from IPython.display import display\n",
        "print(\"\\n### Results in Colab-Friendly Format ###\")\n",
        "print(\"\\nMetrics Without Outliers:\")\n",
        "display(df_no_outliers)\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 307
        },
        "id": "7M9sQ6O-Mc-T",
        "outputId": "1704d60f-f08c-47ba-f0e3-438365b462c1"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\n",
            "### Results in Colab-Friendly Format ###\n",
            "\n",
            "Metrics Without Outliers:\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "            Classifier  Accuracy  F1 Score    Recall  Precision  \\\n",
              "0  Logistic Regression     0.940  0.942857  0.925234   0.961165   \n",
              "1  SVM with RBF Kernel     0.955  0.957746  0.953271   0.962264   \n",
              "2        Decision Tree     0.835  0.834171  0.775701   0.902174   \n",
              "3        Random Forest     0.950  0.952830  0.943925   0.961905   \n",
              "4    Gradient Boosting     0.945  0.947368  0.925234   0.970588   \n",
              "5          Naive Bayes     0.890  0.887755  0.813084   0.977528   \n",
              "\n",
              "   Training Time (s)  \n",
              "0           0.007818  \n",
              "1           0.123307  \n",
              "2           0.015565  \n",
              "3           0.433434  \n",
              "4           0.489675  \n",
              "5           0.003552  "
            ],
            "text/html": [
              "\n",
              "  <div id=\"df-f6189f22-8eac-4d26-bea1-e0fa4450fd2c\" class=\"colab-df-container\">\n",
              "    <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>Classifier</th>\n",
              "      <th>Accuracy</th>\n",
              "      <th>F1 Score</th>\n",
              "      <th>Recall</th>\n",
              "      <th>Precision</th>\n",
              "      <th>Training Time (s)</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>Logistic Regression</td>\n",
              "      <td>0.940</td>\n",
              "      <td>0.942857</td>\n",
              "      <td>0.925234</td>\n",
              "      <td>0.961165</td>\n",
              "      <td>0.007818</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>SVM with RBF Kernel</td>\n",
              "      <td>0.955</td>\n",
              "      <td>0.957746</td>\n",
              "      <td>0.953271</td>\n",
              "      <td>0.962264</td>\n",
              "      <td>0.123307</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>Decision Tree</td>\n",
              "      <td>0.835</td>\n",
              "      <td>0.834171</td>\n",
              "      <td>0.775701</td>\n",
              "      <td>0.902174</td>\n",
              "      <td>0.015565</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>Random Forest</td>\n",
              "      <td>0.950</td>\n",
              "      <td>0.952830</td>\n",
              "      <td>0.943925</td>\n",
              "      <td>0.961905</td>\n",
              "      <td>0.433434</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>Gradient Boosting</td>\n",
              "      <td>0.945</td>\n",
              "      <td>0.947368</td>\n",
              "      <td>0.925234</td>\n",
              "      <td>0.970588</td>\n",
              "      <td>0.489675</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>5</th>\n",
              "      <td>Naive Bayes</td>\n",
              "      <td>0.890</td>\n",
              "      <td>0.887755</td>\n",
              "      <td>0.813084</td>\n",
              "      <td>0.977528</td>\n",
              "      <td>0.003552</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "    <div class=\"colab-df-buttons\">\n",
              "\n",
              "  <div class=\"colab-df-container\">\n",
              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-f6189f22-8eac-4d26-bea1-e0fa4450fd2c')\"\n",
              "            title=\"Convert this dataframe to an interactive table.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "\n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    .colab-df-buttons div {\n",
              "      margin-bottom: 4px;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "    <script>\n",
              "      const buttonEl =\n",
              "        document.querySelector('#df-f6189f22-8eac-4d26-bea1-e0fa4450fd2c button.colab-df-convert');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      async function convertToInteractive(key) {\n",
              "        const element = document.querySelector('#df-f6189f22-8eac-4d26-bea1-e0fa4450fd2c');\n",
              "        const dataTable =\n",
              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                    [key], {});\n",
              "        if (!dataTable) return;\n",
              "\n",
              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "          + ' to learn more about interactive tables.';\n",
              "        element.innerHTML = '';\n",
              "        dataTable['output_type'] = 'display_data';\n",
              "        await google.colab.output.renderOutput(dataTable, element);\n",
              "        const docLink = document.createElement('div');\n",
              "        docLink.innerHTML = docLinkHtml;\n",
              "        element.appendChild(docLink);\n",
              "      }\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "\n",
              "<div id=\"df-78c1e5d1-8de4-4197-8818-b918d851cb45\">\n",
              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-78c1e5d1-8de4-4197-8818-b918d851cb45')\"\n",
              "            title=\"Suggest charts\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "     width=\"24px\">\n",
              "    <g>\n",
              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
              "    </g>\n",
              "</svg>\n",
              "  </button>\n",
              "\n",
              "<style>\n",
              "  .colab-df-quickchart {\n",
              "      --bg-color: #E8F0FE;\n",
              "      --fill-color: #1967D2;\n",
              "      --hover-bg-color: #E2EBFA;\n",
              "      --hover-fill-color: #174EA6;\n",
              "      --disabled-fill-color: #AAA;\n",
              "      --disabled-bg-color: #DDD;\n",
              "  }\n",
              "\n",
              "  [theme=dark] .colab-df-quickchart {\n",
              "      --bg-color: #3B4455;\n",
              "      --fill-color: #D2E3FC;\n",
              "      --hover-bg-color: #434B5C;\n",
              "      --hover-fill-color: #FFFFFF;\n",
              "      --disabled-bg-color: #3B4455;\n",
              "      --disabled-fill-color: #666;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart {\n",
              "    background-color: var(--bg-color);\n",
              "    border: none;\n",
              "    border-radius: 50%;\n",
              "    cursor: pointer;\n",
              "    display: none;\n",
              "    fill: var(--fill-color);\n",
              "    height: 32px;\n",
              "    padding: 0;\n",
              "    width: 32px;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart:hover {\n",
              "    background-color: var(--hover-bg-color);\n",
              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "    fill: var(--button-hover-fill-color);\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart-complete:disabled,\n",
              "  .colab-df-quickchart-complete:disabled:hover {\n",
              "    background-color: var(--disabled-bg-color);\n",
              "    fill: var(--disabled-fill-color);\n",
              "    box-shadow: none;\n",
              "  }\n",
              "\n",
              "  .colab-df-spinner {\n",
              "    border: 2px solid var(--fill-color);\n",
              "    border-color: transparent;\n",
              "    border-bottom-color: var(--fill-color);\n",
              "    animation:\n",
              "      spin 1s steps(1) infinite;\n",
              "  }\n",
              "\n",
              "  @keyframes spin {\n",
              "    0% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "      border-left-color: var(--fill-color);\n",
              "    }\n",
              "    20% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    30% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    40% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    60% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    80% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "    90% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "  }\n",
              "</style>\n",
              "\n",
              "  <script>\n",
              "    async function quickchart(key) {\n",
              "      const quickchartButtonEl =\n",
              "        document.querySelector('#' + key + ' button');\n",
              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
              "      try {\n",
              "        const charts = await google.colab.kernel.invokeFunction(\n",
              "            'suggestCharts', [key], {});\n",
              "      } catch (error) {\n",
              "        console.error('Error during call to suggestCharts:', error);\n",
              "      }\n",
              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
              "    }\n",
              "    (() => {\n",
              "      let quickchartButtonEl =\n",
              "        document.querySelector('#df-78c1e5d1-8de4-4197-8818-b918d851cb45 button');\n",
              "      quickchartButtonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "    })();\n",
              "  </script>\n",
              "</div>\n",
              "\n",
              "  <div id=\"id_cc250be6-2266-45be-b5ed-d108aa4db259\">\n",
              "    <style>\n",
              "      .colab-df-generate {\n",
              "        background-color: #E8F0FE;\n",
              "        border: none;\n",
              "        border-radius: 50%;\n",
              "        cursor: pointer;\n",
              "        display: none;\n",
              "        fill: #1967D2;\n",
              "        height: 32px;\n",
              "        padding: 0 0 0 0;\n",
              "        width: 32px;\n",
              "      }\n",
              "\n",
              "      .colab-df-generate:hover {\n",
              "        background-color: #E2EBFA;\n",
              "        box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "        fill: #174EA6;\n",
              "      }\n",
              "\n",
              "      [theme=dark] .colab-df-generate {\n",
              "        background-color: #3B4455;\n",
              "        fill: #D2E3FC;\n",
              "      }\n",
              "\n",
              "      [theme=dark] .colab-df-generate:hover {\n",
              "        background-color: #434B5C;\n",
              "        box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "        filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "        fill: #FFFFFF;\n",
              "      }\n",
              "    </style>\n",
              "    <button class=\"colab-df-generate\" onclick=\"generateWithVariable('df_no_outliers')\"\n",
              "            title=\"Generate code using this dataframe.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "       width=\"24px\">\n",
              "    <path d=\"M7,19H8.4L18.45,9,17,7.55,7,17.6ZM5,21V16.75L18.45,3.32a2,2,0,0,1,2.83,0l1.4,1.43a1.91,1.91,0,0,1,.58,1.4,1.91,1.91,0,0,1-.58,1.4L9.25,21ZM18.45,9,17,7.55Zm-12,3A5.31,5.31,0,0,0,4.9,8.1,5.31,5.31,0,0,0,1,6.5,5.31,5.31,0,0,0,4.9,4.9,5.31,5.31,0,0,0,6.5,1,5.31,5.31,0,0,0,8.1,4.9,5.31,5.31,0,0,0,12,6.5,5.46,5.46,0,0,0,6.5,12Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "    <script>\n",
              "      (() => {\n",
              "      const buttonEl =\n",
              "        document.querySelector('#id_cc250be6-2266-45be-b5ed-d108aa4db259 button.colab-df-generate');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      buttonEl.onclick = () => {\n",
              "        google.colab.notebook.generateWithVariable('df_no_outliers');\n",
              "      }\n",
              "      })();\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "    </div>\n",
              "  </div>\n"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "dataframe",
              "variable_name": "df_no_outliers",
              "summary": "{\n  \"name\": \"df_no_outliers\",\n  \"rows\": 6,\n  \"fields\": [\n    {\n      \"column\": \"Classifier\",\n      \"properties\": {\n        \"dtype\": \"string\",\n        \"num_unique_values\": 6,\n        \"samples\": [\n          \"Logistic Regression\",\n          \"SVM with RBF Kernel\",\n          \"Naive Bayes\"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"Accuracy\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.047478065110813705,\n        \"min\": 0.835,\n        \"max\": 0.955,\n        \"num_unique_values\": 6,\n        \"samples\": [\n          0.94,\n          0.955,\n          0.89\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"F1 Score\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.049354295873882084,\n        \"min\": 0.8341708542713567,\n        \"max\": 0.9577464788732394,\n        \"num_unique_values\": 6,\n        \"samples\": [\n          0.9428571428571428,\n          0.9577464788732394,\n          0.8877551020408163\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"Recall\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.07532888072544487,\n        \"min\": 0.7757009345794392,\n        \"max\": 0.9532710280373832,\n        \"num_unique_values\": 5,\n        \"samples\": [\n          0.9532710280373832,\n          0.8130841121495327,\n          0.7757009345794392\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"Precision\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.027108238191573854,\n        \"min\": 0.9021739130434783,\n        \"max\": 0.9775280898876404,\n        \"num_unique_values\": 6,\n        \"samples\": [\n          0.9611650485436893,\n          0.9622641509433962,\n          0.9775280898876404\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"Training Time (s)\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.2241223882246531,\n        \"min\": 0.0035517215728759766,\n        \"max\": 0.48967528343200684,\n        \"num_unique_values\": 6,\n        \"samples\": [\n          0.007817506790161133,\n          0.1233072280883789,\n          0.0035517215728759766\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    }\n  ]\n}"
            }
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "print(\"\\nMetrics With Outliers:\")\n",
        "display(df_with_outliers)\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 272
        },
        "id": "Gg4ObWGoMgQp",
        "outputId": "059d970b-9a9e-4c7a-861f-2280d2036c8b"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\n",
            "Metrics With Outliers:\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "            Classifier  Accuracy  F1 Score    Recall  Precision  \\\n",
              "0  Logistic Regression     0.870  0.865979  0.785047   0.965517   \n",
              "1  SVM with RBF Kernel     0.945  0.947867  0.934579   0.961538   \n",
              "2        Decision Tree     0.865  0.870813  0.850467   0.892157   \n",
              "3        Random Forest     0.955  0.957746  0.953271   0.962264   \n",
              "4    Gradient Boosting     0.945  0.947368  0.925234   0.970588   \n",
              "5          Naive Bayes     0.720  0.784615  0.953271   0.666667   \n",
              "\n",
              "   Training Time (s)  \n",
              "0           0.005347  \n",
              "1           0.154885  \n",
              "2           0.019695  \n",
              "3           0.381819  \n",
              "4           0.554216  \n",
              "5           0.002920  "
            ],
            "text/html": [
              "\n",
              "  <div id=\"df-3ec0a532-a0d6-45b9-994d-bae238618ea1\" class=\"colab-df-container\">\n",
              "    <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>Classifier</th>\n",
              "      <th>Accuracy</th>\n",
              "      <th>F1 Score</th>\n",
              "      <th>Recall</th>\n",
              "      <th>Precision</th>\n",
              "      <th>Training Time (s)</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>Logistic Regression</td>\n",
              "      <td>0.870</td>\n",
              "      <td>0.865979</td>\n",
              "      <td>0.785047</td>\n",
              "      <td>0.965517</td>\n",
              "      <td>0.005347</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>SVM with RBF Kernel</td>\n",
              "      <td>0.945</td>\n",
              "      <td>0.947867</td>\n",
              "      <td>0.934579</td>\n",
              "      <td>0.961538</td>\n",
              "      <td>0.154885</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>Decision Tree</td>\n",
              "      <td>0.865</td>\n",
              "      <td>0.870813</td>\n",
              "      <td>0.850467</td>\n",
              "      <td>0.892157</td>\n",
              "      <td>0.019695</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>Random Forest</td>\n",
              "      <td>0.955</td>\n",
              "      <td>0.957746</td>\n",
              "      <td>0.953271</td>\n",
              "      <td>0.962264</td>\n",
              "      <td>0.381819</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>Gradient Boosting</td>\n",
              "      <td>0.945</td>\n",
              "      <td>0.947368</td>\n",
              "      <td>0.925234</td>\n",
              "      <td>0.970588</td>\n",
              "      <td>0.554216</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>5</th>\n",
              "      <td>Naive Bayes</td>\n",
              "      <td>0.720</td>\n",
              "      <td>0.784615</td>\n",
              "      <td>0.953271</td>\n",
              "      <td>0.666667</td>\n",
              "      <td>0.002920</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "    <div class=\"colab-df-buttons\">\n",
              "\n",
              "  <div class=\"colab-df-container\">\n",
              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-3ec0a532-a0d6-45b9-994d-bae238618ea1')\"\n",
              "            title=\"Convert this dataframe to an interactive table.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "\n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    .colab-df-buttons div {\n",
              "      margin-bottom: 4px;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "    <script>\n",
              "      const buttonEl =\n",
              "        document.querySelector('#df-3ec0a532-a0d6-45b9-994d-bae238618ea1 button.colab-df-convert');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      async function convertToInteractive(key) {\n",
              "        const element = document.querySelector('#df-3ec0a532-a0d6-45b9-994d-bae238618ea1');\n",
              "        const dataTable =\n",
              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                    [key], {});\n",
              "        if (!dataTable) return;\n",
              "\n",
              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "          + ' to learn more about interactive tables.';\n",
              "        element.innerHTML = '';\n",
              "        dataTable['output_type'] = 'display_data';\n",
              "        await google.colab.output.renderOutput(dataTable, element);\n",
              "        const docLink = document.createElement('div');\n",
              "        docLink.innerHTML = docLinkHtml;\n",
              "        element.appendChild(docLink);\n",
              "      }\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "\n",
              "<div id=\"df-bd336c71-ed61-4b15-9e67-161faf00aaa5\">\n",
              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-bd336c71-ed61-4b15-9e67-161faf00aaa5')\"\n",
              "            title=\"Suggest charts\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "     width=\"24px\">\n",
              "    <g>\n",
              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
              "    </g>\n",
              "</svg>\n",
              "  </button>\n",
              "\n",
              "<style>\n",
              "  .colab-df-quickchart {\n",
              "      --bg-color: #E8F0FE;\n",
              "      --fill-color: #1967D2;\n",
              "      --hover-bg-color: #E2EBFA;\n",
              "      --hover-fill-color: #174EA6;\n",
              "      --disabled-fill-color: #AAA;\n",
              "      --disabled-bg-color: #DDD;\n",
              "  }\n",
              "\n",
              "  [theme=dark] .colab-df-quickchart {\n",
              "      --bg-color: #3B4455;\n",
              "      --fill-color: #D2E3FC;\n",
              "      --hover-bg-color: #434B5C;\n",
              "      --hover-fill-color: #FFFFFF;\n",
              "      --disabled-bg-color: #3B4455;\n",
              "      --disabled-fill-color: #666;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart {\n",
              "    background-color: var(--bg-color);\n",
              "    border: none;\n",
              "    border-radius: 50%;\n",
              "    cursor: pointer;\n",
              "    display: none;\n",
              "    fill: var(--fill-color);\n",
              "    height: 32px;\n",
              "    padding: 0;\n",
              "    width: 32px;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart:hover {\n",
              "    background-color: var(--hover-bg-color);\n",
              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "    fill: var(--button-hover-fill-color);\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart-complete:disabled,\n",
              "  .colab-df-quickchart-complete:disabled:hover {\n",
              "    background-color: var(--disabled-bg-color);\n",
              "    fill: var(--disabled-fill-color);\n",
              "    box-shadow: none;\n",
              "  }\n",
              "\n",
              "  .colab-df-spinner {\n",
              "    border: 2px solid var(--fill-color);\n",
              "    border-color: transparent;\n",
              "    border-bottom-color: var(--fill-color);\n",
              "    animation:\n",
              "      spin 1s steps(1) infinite;\n",
              "  }\n",
              "\n",
              "  @keyframes spin {\n",
              "    0% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "      border-left-color: var(--fill-color);\n",
              "    }\n",
              "    20% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    30% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    40% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    60% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    80% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "    90% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "  }\n",
              "</style>\n",
              "\n",
              "  <script>\n",
              "    async function quickchart(key) {\n",
              "      const quickchartButtonEl =\n",
              "        document.querySelector('#' + key + ' button');\n",
              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
              "      try {\n",
              "        const charts = await google.colab.kernel.invokeFunction(\n",
              "            'suggestCharts', [key], {});\n",
              "      } catch (error) {\n",
              "        console.error('Error during call to suggestCharts:', error);\n",
              "      }\n",
              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
              "    }\n",
              "    (() => {\n",
              "      let quickchartButtonEl =\n",
              "        document.querySelector('#df-bd336c71-ed61-4b15-9e67-161faf00aaa5 button');\n",
              "      quickchartButtonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "    })();\n",
              "  </script>\n",
              "</div>\n",
              "\n",
              "  <div id=\"id_7eac9cc1-f8d9-435e-83c0-a9bd3b668dec\">\n",
              "    <style>\n",
              "      .colab-df-generate {\n",
              "        background-color: #E8F0FE;\n",
              "        border: none;\n",
              "        border-radius: 50%;\n",
              "        cursor: pointer;\n",
              "        display: none;\n",
              "        fill: #1967D2;\n",
              "        height: 32px;\n",
              "        padding: 0 0 0 0;\n",
              "        width: 32px;\n",
              "      }\n",
              "\n",
              "      .colab-df-generate:hover {\n",
              "        background-color: #E2EBFA;\n",
              "        box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "        fill: #174EA6;\n",
              "      }\n",
              "\n",
              "      [theme=dark] .colab-df-generate {\n",
              "        background-color: #3B4455;\n",
              "        fill: #D2E3FC;\n",
              "      }\n",
              "\n",
              "      [theme=dark] .colab-df-generate:hover {\n",
              "        background-color: #434B5C;\n",
              "        box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "        filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "        fill: #FFFFFF;\n",
              "      }\n",
              "    </style>\n",
              "    <button class=\"colab-df-generate\" onclick=\"generateWithVariable('df_with_outliers')\"\n",
              "            title=\"Generate code using this dataframe.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "       width=\"24px\">\n",
              "    <path d=\"M7,19H8.4L18.45,9,17,7.55,7,17.6ZM5,21V16.75L18.45,3.32a2,2,0,0,1,2.83,0l1.4,1.43a1.91,1.91,0,0,1,.58,1.4,1.91,1.91,0,0,1-.58,1.4L9.25,21ZM18.45,9,17,7.55Zm-12,3A5.31,5.31,0,0,0,4.9,8.1,5.31,5.31,0,0,0,1,6.5,5.31,5.31,0,0,0,4.9,4.9,5.31,5.31,0,0,0,6.5,1,5.31,5.31,0,0,0,8.1,4.9,5.31,5.31,0,0,0,12,6.5,5.46,5.46,0,0,0,6.5,12Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "    <script>\n",
              "      (() => {\n",
              "      const buttonEl =\n",
              "        document.querySelector('#id_7eac9cc1-f8d9-435e-83c0-a9bd3b668dec button.colab-df-generate');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      buttonEl.onclick = () => {\n",
              "        google.colab.notebook.generateWithVariable('df_with_outliers');\n",
              "      }\n",
              "      })();\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "    </div>\n",
              "  </div>\n"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "dataframe",
              "variable_name": "df_with_outliers",
              "summary": "{\n  \"name\": \"df_with_outliers\",\n  \"rows\": 6,\n  \"fields\": [\n    {\n      \"column\": \"Classifier\",\n      \"properties\": {\n        \"dtype\": \"string\",\n        \"num_unique_values\": 6,\n        \"samples\": [\n          \"Logistic Regression\",\n          \"SVM with RBF Kernel\",\n          \"Naive Bayes\"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"Accuracy\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.08936815241833448,\n        \"min\": 0.72,\n        \"max\": 0.955,\n        \"num_unique_values\": 5,\n        \"samples\": [\n          0.945,\n          0.72,\n          0.865\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"F1 Score\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.06794595237537131,\n        \"min\": 0.7846153846153846,\n        \"max\": 0.9577464788732394,\n        \"num_unique_values\": 6,\n        \"samples\": [\n          0.865979381443299,\n          0.9478672985781991,\n          0.7846153846153846\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"Recall\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.06808118818516005,\n        \"min\": 0.7850467289719626,\n        \"max\": 0.9532710280373832,\n        \"num_unique_values\": 5,\n        \"samples\": [\n          0.9345794392523364,\n          0.9252336448598131,\n          0.8504672897196262\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"Precision\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.11948765203585018,\n        \"min\": 0.6666666666666666,\n        \"max\": 0.9705882352941176,\n        \"num_unique_values\": 6,\n        \"samples\": [\n          0.9655172413793104,\n          0.9615384615384616,\n          0.6666666666666666\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"Training Time (s)\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.2318213154775346,\n        \"min\": 0.002920389175415039,\n        \"max\": 0.554215669631958,\n        \"num_unique_values\": 6,\n        \"samples\": [\n          0.005347251892089844,\n          0.15488481521606445,\n          0.002920389175415039\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    }\n  ]\n}"
            }
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "print(\"\\nOutlier Sensitivity (Change in Metrics):\")\n",
        "display(df_difference)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 307
        },
        "id": "aiVh1FOQMjXe",
        "outputId": "f9c9277d-96f3-4446-936d-993246c77573"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\n",
            "Outlier Sensitivity (Change in Metrics):\n"
          ]
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "            Classifier  Accuracy Change  F1 Score Change  Recall Change  \\\n",
              "0  Logistic Regression           -0.070        -0.076878      -0.140187   \n",
              "1  SVM with RBF Kernel           -0.010        -0.009879      -0.018692   \n",
              "2        Decision Tree            0.030         0.036643       0.074766   \n",
              "3        Random Forest            0.005         0.004916       0.009346   \n",
              "4    Gradient Boosting            0.000         0.000000       0.000000   \n",
              "5          Naive Bayes           -0.170        -0.103140       0.140187   \n",
              "\n",
              "   Precision Change  Training Time (s)  \n",
              "0          0.004352           0.005347  \n",
              "1         -0.000726           0.154885  \n",
              "2         -0.010017           0.019695  \n",
              "3          0.000359           0.381819  \n",
              "4          0.000000           0.554216  \n",
              "5         -0.310861           0.002920  "
            ],
            "text/html": [
              "\n",
              "  <div id=\"df-1d1306a7-50a0-4c82-8582-701894256a61\" class=\"colab-df-container\">\n",
              "    <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>Classifier</th>\n",
              "      <th>Accuracy Change</th>\n",
              "      <th>F1 Score Change</th>\n",
              "      <th>Recall Change</th>\n",
              "      <th>Precision Change</th>\n",
              "      <th>Training Time (s)</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>Logistic Regression</td>\n",
              "      <td>-0.070</td>\n",
              "      <td>-0.076878</td>\n",
              "      <td>-0.140187</td>\n",
              "      <td>0.004352</td>\n",
              "      <td>0.005347</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>SVM with RBF Kernel</td>\n",
              "      <td>-0.010</td>\n",
              "      <td>-0.009879</td>\n",
              "      <td>-0.018692</td>\n",
              "      <td>-0.000726</td>\n",
              "      <td>0.154885</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>Decision Tree</td>\n",
              "      <td>0.030</td>\n",
              "      <td>0.036643</td>\n",
              "      <td>0.074766</td>\n",
              "      <td>-0.010017</td>\n",
              "      <td>0.019695</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>Random Forest</td>\n",
              "      <td>0.005</td>\n",
              "      <td>0.004916</td>\n",
              "      <td>0.009346</td>\n",
              "      <td>0.000359</td>\n",
              "      <td>0.381819</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>Gradient Boosting</td>\n",
              "      <td>0.000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.000000</td>\n",
              "      <td>0.554216</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>5</th>\n",
              "      <td>Naive Bayes</td>\n",
              "      <td>-0.170</td>\n",
              "      <td>-0.103140</td>\n",
              "      <td>0.140187</td>\n",
              "      <td>-0.310861</td>\n",
              "      <td>0.002920</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "    <div class=\"colab-df-buttons\">\n",
              "\n",
              "  <div class=\"colab-df-container\">\n",
              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-1d1306a7-50a0-4c82-8582-701894256a61')\"\n",
              "            title=\"Convert this dataframe to an interactive table.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "\n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    .colab-df-buttons div {\n",
              "      margin-bottom: 4px;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "    <script>\n",
              "      const buttonEl =\n",
              "        document.querySelector('#df-1d1306a7-50a0-4c82-8582-701894256a61 button.colab-df-convert');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      async function convertToInteractive(key) {\n",
              "        const element = document.querySelector('#df-1d1306a7-50a0-4c82-8582-701894256a61');\n",
              "        const dataTable =\n",
              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                    [key], {});\n",
              "        if (!dataTable) return;\n",
              "\n",
              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "          + ' to learn more about interactive tables.';\n",
              "        element.innerHTML = '';\n",
              "        dataTable['output_type'] = 'display_data';\n",
              "        await google.colab.output.renderOutput(dataTable, element);\n",
              "        const docLink = document.createElement('div');\n",
              "        docLink.innerHTML = docLinkHtml;\n",
              "        element.appendChild(docLink);\n",
              "      }\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "\n",
              "<div id=\"df-fd704534-5f6a-4387-9ba7-3efe50153161\">\n",
              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-fd704534-5f6a-4387-9ba7-3efe50153161')\"\n",
              "            title=\"Suggest charts\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "     width=\"24px\">\n",
              "    <g>\n",
              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
              "    </g>\n",
              "</svg>\n",
              "  </button>\n",
              "\n",
              "<style>\n",
              "  .colab-df-quickchart {\n",
              "      --bg-color: #E8F0FE;\n",
              "      --fill-color: #1967D2;\n",
              "      --hover-bg-color: #E2EBFA;\n",
              "      --hover-fill-color: #174EA6;\n",
              "      --disabled-fill-color: #AAA;\n",
              "      --disabled-bg-color: #DDD;\n",
              "  }\n",
              "\n",
              "  [theme=dark] .colab-df-quickchart {\n",
              "      --bg-color: #3B4455;\n",
              "      --fill-color: #D2E3FC;\n",
              "      --hover-bg-color: #434B5C;\n",
              "      --hover-fill-color: #FFFFFF;\n",
              "      --disabled-bg-color: #3B4455;\n",
              "      --disabled-fill-color: #666;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart {\n",
              "    background-color: var(--bg-color);\n",
              "    border: none;\n",
              "    border-radius: 50%;\n",
              "    cursor: pointer;\n",
              "    display: none;\n",
              "    fill: var(--fill-color);\n",
              "    height: 32px;\n",
              "    padding: 0;\n",
              "    width: 32px;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart:hover {\n",
              "    background-color: var(--hover-bg-color);\n",
              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "    fill: var(--button-hover-fill-color);\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart-complete:disabled,\n",
              "  .colab-df-quickchart-complete:disabled:hover {\n",
              "    background-color: var(--disabled-bg-color);\n",
              "    fill: var(--disabled-fill-color);\n",
              "    box-shadow: none;\n",
              "  }\n",
              "\n",
              "  .colab-df-spinner {\n",
              "    border: 2px solid var(--fill-color);\n",
              "    border-color: transparent;\n",
              "    border-bottom-color: var(--fill-color);\n",
              "    animation:\n",
              "      spin 1s steps(1) infinite;\n",
              "  }\n",
              "\n",
              "  @keyframes spin {\n",
              "    0% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "      border-left-color: var(--fill-color);\n",
              "    }\n",
              "    20% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    30% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    40% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    60% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    80% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "    90% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "  }\n",
              "</style>\n",
              "\n",
              "  <script>\n",
              "    async function quickchart(key) {\n",
              "      const quickchartButtonEl =\n",
              "        document.querySelector('#' + key + ' button');\n",
              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
              "      try {\n",
              "        const charts = await google.colab.kernel.invokeFunction(\n",
              "            'suggestCharts', [key], {});\n",
              "      } catch (error) {\n",
              "        console.error('Error during call to suggestCharts:', error);\n",
              "      }\n",
              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
              "    }\n",
              "    (() => {\n",
              "      let quickchartButtonEl =\n",
              "        document.querySelector('#df-fd704534-5f6a-4387-9ba7-3efe50153161 button');\n",
              "      quickchartButtonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "    })();\n",
              "  </script>\n",
              "</div>\n",
              "\n",
              "  <div id=\"id_c0d05440-7262-4ea2-960e-4eb3fd6983a4\">\n",
              "    <style>\n",
              "      .colab-df-generate {\n",
              "        background-color: #E8F0FE;\n",
              "        border: none;\n",
              "        border-radius: 50%;\n",
              "        cursor: pointer;\n",
              "        display: none;\n",
              "        fill: #1967D2;\n",
              "        height: 32px;\n",
              "        padding: 0 0 0 0;\n",
              "        width: 32px;\n",
              "      }\n",
              "\n",
              "      .colab-df-generate:hover {\n",
              "        background-color: #E2EBFA;\n",
              "        box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "        fill: #174EA6;\n",
              "      }\n",
              "\n",
              "      [theme=dark] .colab-df-generate {\n",
              "        background-color: #3B4455;\n",
              "        fill: #D2E3FC;\n",
              "      }\n",
              "\n",
              "      [theme=dark] .colab-df-generate:hover {\n",
              "        background-color: #434B5C;\n",
              "        box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "        filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "        fill: #FFFFFF;\n",
              "      }\n",
              "    </style>\n",
              "    <button class=\"colab-df-generate\" onclick=\"generateWithVariable('df_difference')\"\n",
              "            title=\"Generate code using this dataframe.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "       width=\"24px\">\n",
              "    <path d=\"M7,19H8.4L18.45,9,17,7.55,7,17.6ZM5,21V16.75L18.45,3.32a2,2,0,0,1,2.83,0l1.4,1.43a1.91,1.91,0,0,1,.58,1.4,1.91,1.91,0,0,1-.58,1.4L9.25,21ZM18.45,9,17,7.55Zm-12,3A5.31,5.31,0,0,0,4.9,8.1,5.31,5.31,0,0,0,1,6.5,5.31,5.31,0,0,0,4.9,4.9,5.31,5.31,0,0,0,6.5,1,5.31,5.31,0,0,0,8.1,4.9,5.31,5.31,0,0,0,12,6.5,5.46,5.46,0,0,0,6.5,12Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "    <script>\n",
              "      (() => {\n",
              "      const buttonEl =\n",
              "        document.querySelector('#id_c0d05440-7262-4ea2-960e-4eb3fd6983a4 button.colab-df-generate');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      buttonEl.onclick = () => {\n",
              "        google.colab.notebook.generateWithVariable('df_difference');\n",
              "      }\n",
              "      })();\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "    </div>\n",
              "  </div>\n"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "dataframe",
              "variable_name": "df_difference",
              "summary": "{\n  \"name\": \"df_difference\",\n  \"rows\": 6,\n  \"fields\": [\n    {\n      \"column\": \"Classifier\",\n      \"properties\": {\n        \"dtype\": \"string\",\n        \"num_unique_values\": 6,\n        \"samples\": [\n          \"Logistic Regression\",\n          \"SVM with RBF Kernel\",\n          \"Naive Bayes\"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"Accuracy Change\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.07364894206074293,\n        \"min\": -0.17000000000000004,\n        \"max\": 0.030000000000000027,\n        \"num_unique_values\": 6,\n        \"samples\": [\n          -0.06999999999999995,\n          -0.010000000000000009,\n          -0.17000000000000004\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"F1 Score Change\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.05356320340641182,\n        \"min\": -0.10313971742543171,\n        \"max\": 0.03664254285782986,\n        \"num_unique_values\": 6,\n        \"samples\": [\n          -0.07687776141384384,\n          -0.009879180295040313,\n          -0.10313971742543171\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"Recall Change\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.09446497943960316,\n        \"min\": -0.14018691588785048,\n        \"max\": 0.14018691588785048,\n        \"num_unique_values\": 6,\n        \"samples\": [\n          -0.14018691588785048,\n          -0.01869158878504673,\n          0.14018691588785048\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"Precision Change\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.1265052924776638,\n        \"min\": -0.31086142322097376,\n        \"max\": 0.004352192835621049,\n        \"num_unique_values\": 6,\n        \"samples\": [\n          0.004352192835621049,\n          -0.0007256894049346707,\n          -0.31086142322097376\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"Training Time (s)\",\n      \"properties\": {\n        \"dtype\": \"number\",\n        \"std\": 0.2318213154775346,\n        \"min\": 0.002920389175415039,\n        \"max\": 0.554215669631958,\n        \"num_unique_values\": 6,\n        \"samples\": [\n          0.005347251892089844,\n          0.15488481521606445,\n          0.002920389175415039\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    }\n  ]\n}"
            }
          },
          "metadata": {}
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "XCpH0MpYMnVz"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}