Contact Us!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
Avatar for stephanie's main branch.

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download

"Guiding Future STEM Leaders through Innovative Research Training" ~ thinkingbeyond.education

Views: 836
Image: ubuntu2204
Kernel: Python 3 (system-wide)

This code goes along with a planned expository talk "The Description Problems for Ideals and Robots". Cf. slide 18 of presentation "Specialization of Grobner Bases II".

Let f~i=Fifi,gj~=Gjgj.\tilde{f}_i = F_if_i, \tilde{g_j} = G_jg_j.

If dgj~∈I~d\tilde{g_j} \in \tilde{I} for all jj, then we can write

dg~j=∑i=1sB~jifi.d\tilde{g}_j = \sum^{s}_{i = 1} \tilde{B}_{ji}f_i.

Dividing by dGjdG_j,

g~j=∑i=1s(B~jiFidGj)fi=∑i=1sB~jifi,\tilde{g}_j = \sum^{s}_{i = 1}(\frac{\tilde{B}_{ji}F_i}{dG_j})f_i = \sum^{s}_{i = 1} \tilde{B}_{ji}f_i,

where the denominators of B~ji\tilde{B}_{ji} are purely factors of dd. We can form a Grobner basis for II under the specialization t↦a∈km V(d).t \mapsto a \in k^m \ V(d). We check by:

  1. Computing a Grobner basis G~\tilde{G} for I~\tilde{I} .

  2. Dividing dj~d\tilde{j} by G~\tilde{G}.

Our subvariety W⊆VW \subseteq V exists by the vanishing of denominators d=l2l3(a2+b2)d = l_2l_3(a^2 + b^2). After clearing the denominators of our original Grobner Basis

we have new four new g~j\tilde{g}_j and check that dg~j∈I~d \tilde{g}_j \in \tilde{I} :

R.<c1,s1,c2,s2,l2,l3,a,b>=PolynomialRing(QQ) G=ideal(l3*c1*c2+l2*c1-l3*s1*s2-a,l3*c1*s2+l3*s1*c2+l2*s1-b,c1^2+s1^2-1,c2^2+s2^2 -1).groebner_basis() d=l2*l3*(a^2+b^2) tildeg1=l2*(a^2+b^2)*c1-b*l2*l3*s2-1/2*a*(a^2+b^2+l2^2-l3^2) tildeg2=l2*(a^2+b^2)*s1+a*l2*l3*s2-1/2*b*(a^2+b^2+l2^2-l3^2) tildeg3=l2*l3*c2-1/2*(a^2+b^2-l2^2-l3^2) tildeg4=l2^2*l3^2*s2^2+1/4*((a^2+b^2)^2-2*(a^2+b^2)*(l2^2+l3^2)+(l2^2-l3^2)^2) (d*tildeg1).reduce(G) (d*tildeg2).reduce(G) (d*tildeg3).reduce(G) (d*tildeg4).reduce(G)
0

It does! Hence

(cf. slide 16 of presentation "The Inverse Kinematic Problem - Solving Our System II")

remains a Grobner basis for

(cf. slide 15 of presentation "The Inverse Kinematic Problem - Solving Our System I")

under all specializations in R[l2,l3,a,b] V(d)\R[l_2, l_3, a, b] \ \textbf{V}(d). 🟪