ubuntu2004
import numpy as np1import matplotlib.pyplot as plt2from scipy.integrate import odeint34M=55m=26g=9.8178def Atwood(y,t,M,m,g):910#theta'(t)=omega(t)11#radius'(t)=Rho(t)1213#omega'(t)=(1/radius(t))(-g*sin(theta(t))-2(Rho(t)*omega(t))14#Rho'(t)=(1/(M+m))(m*radius(t)*(omega(t)^2)-M*g+m*g*cos(theta(t)))1516theta, omega, radius, Rho = y1718dydt = [omega, (1/radius)*(-g*(np.sin(theta))-2*(Rho*omega)), Rho, (1/(M+m))*(m*radius*(omega**2)-M*g+m*g*(np.cos(theta)))]1920return dydt2122#y0=[theta, change in theta, radius, change in radius]23y0 = [0 ,2 ,1 ,1]24#time points25t = np.linspace(0,10,101)26#Solving the ODE27sul = odeint(Atwood, y0, t, args=(M,m,g))2829plt.plot(sul[:,0], sul[:,1], 'r', label='theta (x) vs theta dot (y)') #Phase plot30plt.legend(loc='best')31plt.grid()32plt.show()3334