CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
2
<!-- %% -->
3
<!-- %A algebra.msk GAP documentation Willem de Graaf -->
4
<!-- %% -->
5
<!-- %A @(#)<M>Id: algebra.msk,v 1.35 2006/03/10 08:55:52 gap Exp </M> -->
6
<!-- %% -->
7
<!-- %Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland -->
8
<!-- %Y Copyright (C) 2002 The GAP Group -->
9
<!-- %% -->
10
<Chapter Label="Algebras">
11
<Heading>Algebras</Heading>
12
13
<#Include Label="[1]{algebra}">
14
15
<!-- %% The algebra functionality was designed and implemented by Thomas Breuer and -->
16
<!-- %% Willem de Graaf. -->
17
18
19
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
20
<Section Label="sect:InfoAlgebra">
21
<Heading>InfoAlgebra (Info Class)</Heading>
22
23
<#Include Label="InfoAlgebra">
24
25
</Section>
26
27
28
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
29
<Section Label="Constructing Algebras by Generators">
30
<Heading>Constructing Algebras by Generators</Heading>
31
32
<!-- % AlgebraByGenerators( <A>F</A>, <A>gens</A>, <A>zero</A> ) Left out... -->
33
34
<#Include Label="Algebra">
35
<!-- % AlgebraWithOneByGenerators( <A>F</A>, <A>gens</A>, <A>zero</A> ) Left out... -->
36
<#Include Label="AlgebraWithOne">
37
38
</Section>
39
40
41
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
42
<Section Label="Constructing Algebras as Free Algebras">
43
<Heading>Constructing Algebras as Free Algebras</Heading>
44
45
<#Include Label="FreeAlgebra">
46
<#Include Label="FreeAlgebraWithOne">
47
<#Include Label="FreeAssociativeAlgebra">
48
<#Include Label="FreeAssociativeAlgebraWithOne">
49
50
</Section>
51
52
53
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
54
<Section Label="Constructing Algebras by Structure Constants">
55
<Heading>Constructing Algebras by Structure Constants</Heading>
56
57
<#Include Label="[2]{algebra}">
58
<#Include Label="AlgebraByStructureConstants">
59
<#Include Label="StructureConstantsTable">
60
<#Include Label="EmptySCTable">
61
<#Include Label="SetEntrySCTable">
62
<#Include Label="GapInputSCTable">
63
<#Include Label="TestJacobi">
64
<#Include Label="IdentityFromSCTable">
65
<#Include Label="QuotientFromSCTable">
66
67
</Section>
68
69
70
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
71
<Section Label="Some Special Algebras">
72
<Heading>Some Special Algebras</Heading>
73
74
<#Include Label="QuaternionAlgebra">
75
<#Include Label="ComplexificationQuat">
76
<#Include Label="OctaveAlgebra">
77
<#Include Label="FullMatrixAlgebra">
78
<#Include Label="NullAlgebra">
79
80
</Section>
81
82
83
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
84
<Section Label="Subalgebras">
85
<Heading>Subalgebras</Heading>
86
87
<#Include Label="Subalgebra">
88
<#Include Label="SubalgebraNC">
89
<#Include Label="SubalgebraWithOne">
90
<#Include Label="SubalgebraWithOneNC">
91
<#Include Label="TrivialSubalgebra">
92
93
</Section>
94
95
96
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
97
<Section Label="Ideals of Algebras">
98
<Heading>Ideals of Algebras</Heading>
99
100
For constructing and working with ideals in algebras the same functions
101
are available as for ideals in rings. So for the precise description of
102
these functions we refer to Chapter <Ref Chap="Rings"/>. Here we give examples
103
demonstrating the use of ideals in algebras.
104
For an introduction into the construction of quotient algebras
105
we refer to Chapter <Ref Sect="Algebras" BookName="tut"/>
106
of the user's tutorial.
107
<P/>
108
<Example><![CDATA[
109
gap> m:= [ [ 0, 2, 3 ], [ 0, 0, 4 ], [ 0, 0, 0] ];;
110
gap> A:= AlgebraWithOne( Rationals, [ m ] );;
111
gap> I:= Ideal( A, [ m ] ); # the two-sided ideal of `A' generated by `m'
112
<two-sided ideal in <algebra-with-one of dimension 3 over Rationals>,
113
(1 generators)>
114
gap> Dimension( I );
115
2
116
gap> GeneratorsOfIdeal( I );
117
[ [ [ 0, 2, 3 ], [ 0, 0, 4 ], [ 0, 0, 0 ] ] ]
118
gap> BasisVectors( Basis( I ) );
119
[ [ [ 0, 1, 3/2 ], [ 0, 0, 2 ], [ 0, 0, 0 ] ],
120
[ [ 0, 0, 1 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ] ]
121
gap> A:= FullMatrixAlgebra( Rationals, 4 );;
122
gap> m:= NullMat( 4, 4 );; m[1][4]:=1;;
123
gap> I:= LeftIdeal( A, [ m ] );
124
<left ideal in ( Rationals^[ 4, 4 ] ), (1 generators)>
125
gap> Dimension( I );
126
4
127
gap> GeneratorsOfLeftIdeal( I );
128
[ [ [ 0, 0, 0, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ] ] ]
129
gap> mats:= [ [[1,0],[0,0]], [[0,1],[0,0]], [[0,0],[0,1]] ];;
130
gap> A:= Algebra( Rationals, mats );;
131
gap> # Form the two-sided ideal for which `mats[2]' is known to be
132
gap> # the unique basis element.
133
gap> I:= Ideal( A, [ mats[2] ], "basis" );
134
<two-sided ideal in <algebra of dimension 3 over Rationals>,
135
(dimension 1)>
136
]]></Example>
137
138
</Section>
139
140
141
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
142
<Section Label="Categories and Properties of Algebras">
143
<Heading>Categories and Properties of Algebras</Heading>
144
145
<#Include Label="IsFLMLOR">
146
<#Include Label="IsFLMLORWithOne">
147
<#Include Label="IsAlgebra">
148
<#Include Label="IsAlgebraWithOne">
149
<#Include Label="IsLieAlgebra">
150
<#Include Label="IsSimpleAlgebra">
151
<!-- % IsMatrixFLMLOR left out... -->
152
153
<ManSection>
154
<Meth Name="IsFiniteDimensional" Arg='matalg' Label="for matrix algebras"/>
155
156
<Description>
157
returns <K>true</K> (always) for a matrix algebra <A>matalg</A>, since
158
matrix algebras are always finite dimensional.
159
<P/>
160
<Example><![CDATA[
161
gap> A:= MatAlgebra( Rationals, 3 );;
162
gap> IsFiniteDimensional( A );
163
true
164
]]></Example>
165
</Description>
166
</ManSection>
167
168
<#Include Label="IsQuaternion">
169
170
</Section>
171
172
173
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
174
<Section Label="Attributes and Operations for Algebras">
175
<Heading>Attributes and Operations for Algebras</Heading>
176
177
<!-- % GeneratorsOfLeftOperatorRing left out.... -->
178
<!-- % GeneratorsOfLeftOperatorRingWithOne left out.... -->
179
<#Include Label="GeneratorsOfAlgebra">
180
<#Include Label="GeneratorsOfAlgebraWithOne">
181
<#Include Label="ProductSpace">
182
<#Include Label="PowerSubalgebraSeries">
183
<#Include Label="AdjointBasis">
184
<#Include Label="IndicesOfAdjointBasis">
185
<#Include Label="AsAlgebra">
186
<#Include Label="AsAlgebraWithOne">
187
<#Include Label="AsSubalgebra">
188
<#Include Label="AsSubalgebraWithOne">
189
<#Include Label="MutableBasisOfClosureUnderAction">
190
<#Include Label="MutableBasisOfNonassociativeAlgebra">
191
<#Include Label="MutableBasisOfIdealInNonassociativeAlgebra">
192
<#Include Label="DirectSumOfAlgebras">
193
<#Include Label="FullMatrixAlgebraCentralizer">
194
<#Include Label="RadicalOfAlgebra">
195
<#Include Label="CentralIdempotentsOfAlgebra">
196
<#Include Label="DirectSumDecomposition">
197
<#Include Label="LeviMalcevDecomposition">
198
<#Include Label="Grading">
199
200
</Section>
201
202
203
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
204
<Section Label="Homomorphisms of Algebras">
205
<Heading>Homomorphisms of Algebras</Heading>
206
207
<#Include Label="[1]{alghom}">
208
<#Include Label="AlgebraGeneralMappingByImages">
209
<#Include Label="AlgebraHomomorphismByImages">
210
<#Include Label="AlgebraHomomorphismByImagesNC">
211
<#Include Label="AlgebraWithOneGeneralMappingByImages">
212
<#Include Label="AlgebraWithOneHomomorphismByImages">
213
<#Include Label="AlgebraWithOneHomomorphismByImagesNC">
214
<#Include Label="NaturalHomomorphismByIdeal_algebras">
215
<#Include Label="OperationAlgebraHomomorphism">
216
<#Include Label="NiceAlgebraMonomorphism">
217
<#Include Label="IsomorphismFpAlgebra">
218
<#Include Label="IsomorphismMatrixAlgebra">
219
<#Include Label="IsomorphismSCAlgebra">
220
<#Include Label="RepresentativeLinearOperation">
221
222
</Section>
223
224
225
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
226
<Section Label="Representations of Algebras">
227
<Heading>Representations of Algebras</Heading>
228
229
<#Include Label="[1]{algrep}">
230
<#Include Label="LeftAlgebraModuleByGenerators">
231
<#Include Label="RightAlgebraModuleByGenerators">
232
<#Include Label="BiAlgebraModuleByGenerators">
233
<#Include Label="LeftAlgebraModule">
234
<#Include Label="RightAlgebraModule">
235
<#Include Label="BiAlgebraModule">
236
<#Include Label="GeneratorsOfAlgebraModule">
237
<#Include Label="IsAlgebraModuleElement">
238
<#Include Label="IsLeftAlgebraModuleElement">
239
<#Include Label="IsRightAlgebraModuleElement">
240
<#Include Label="LeftActingAlgebra">
241
<#Include Label="RightActingAlgebra">
242
<#Include Label="ActingAlgebra">
243
<#Include Label="IsBasisOfAlgebraModuleElementSpace">
244
<#Include Label="MatrixOfAction">
245
<#Include Label="SubAlgebraModule">
246
<#Include Label="LeftModuleByHomomorphismToMatAlg">
247
<#Include Label="RightModuleByHomomorphismToMatAlg">
248
<#Include Label="AdjointModule">
249
<!-- % One would be tempted to call <C>W</C> a left ideal in <C>V</C>, -->
250
<!-- % but in the current implementation, neither <C>V</C> nor <C>W</C> are themselves -->
251
<!-- % algebras; note that the element <C>v</C>, although looking like a matrix, -->
252
<!-- % cannot be multiplied with itself. -->
253
<#Include Label="FaithfulModule">
254
<#Include Label="ModuleByRestriction">
255
<#Include Label="NaturalHomomorphismBySubAlgebraModule">
256
<#Include Label="DirectSumOfAlgebraModules">
257
<#Include Label="TranslatorSubalgebra">
258
259
</Section>
260
</Chapter>
261
262
263
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
264
<!-- %% -->
265
<!-- %E -->
266
267
268