Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->1<!-- %% -->2<!-- %A algebra.msk GAP documentation Willem de Graaf -->3<!-- %% -->4<!-- %A @(#)<M>Id: algebra.msk,v 1.35 2006/03/10 08:55:52 gap Exp </M> -->5<!-- %% -->6<!-- %Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland -->7<!-- %Y Copyright (C) 2002 The GAP Group -->8<!-- %% -->9<Chapter Label="Algebras">10<Heading>Algebras</Heading>1112<#Include Label="[1]{algebra}">1314<!-- %% The algebra functionality was designed and implemented by Thomas Breuer and -->15<!-- %% Willem de Graaf. -->161718<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->19<Section Label="sect:InfoAlgebra">20<Heading>InfoAlgebra (Info Class)</Heading>2122<#Include Label="InfoAlgebra">2324</Section>252627<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->28<Section Label="Constructing Algebras by Generators">29<Heading>Constructing Algebras by Generators</Heading>3031<!-- % AlgebraByGenerators( <A>F</A>, <A>gens</A>, <A>zero</A> ) Left out... -->3233<#Include Label="Algebra">34<!-- % AlgebraWithOneByGenerators( <A>F</A>, <A>gens</A>, <A>zero</A> ) Left out... -->35<#Include Label="AlgebraWithOne">3637</Section>383940<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->41<Section Label="Constructing Algebras as Free Algebras">42<Heading>Constructing Algebras as Free Algebras</Heading>4344<#Include Label="FreeAlgebra">45<#Include Label="FreeAlgebraWithOne">46<#Include Label="FreeAssociativeAlgebra">47<#Include Label="FreeAssociativeAlgebraWithOne">4849</Section>505152<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->53<Section Label="Constructing Algebras by Structure Constants">54<Heading>Constructing Algebras by Structure Constants</Heading>5556<#Include Label="[2]{algebra}">57<#Include Label="AlgebraByStructureConstants">58<#Include Label="StructureConstantsTable">59<#Include Label="EmptySCTable">60<#Include Label="SetEntrySCTable">61<#Include Label="GapInputSCTable">62<#Include Label="TestJacobi">63<#Include Label="IdentityFromSCTable">64<#Include Label="QuotientFromSCTable">6566</Section>676869<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->70<Section Label="Some Special Algebras">71<Heading>Some Special Algebras</Heading>7273<#Include Label="QuaternionAlgebra">74<#Include Label="ComplexificationQuat">75<#Include Label="OctaveAlgebra">76<#Include Label="FullMatrixAlgebra">77<#Include Label="NullAlgebra">7879</Section>808182<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->83<Section Label="Subalgebras">84<Heading>Subalgebras</Heading>8586<#Include Label="Subalgebra">87<#Include Label="SubalgebraNC">88<#Include Label="SubalgebraWithOne">89<#Include Label="SubalgebraWithOneNC">90<#Include Label="TrivialSubalgebra">9192</Section>939495<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->96<Section Label="Ideals of Algebras">97<Heading>Ideals of Algebras</Heading>9899For constructing and working with ideals in algebras the same functions100are available as for ideals in rings. So for the precise description of101these functions we refer to Chapter <Ref Chap="Rings"/>. Here we give examples102demonstrating the use of ideals in algebras.103For an introduction into the construction of quotient algebras104we refer to Chapter <Ref Sect="Algebras" BookName="tut"/>105of the user's tutorial.106<P/>107<Example><![CDATA[108gap> m:= [ [ 0, 2, 3 ], [ 0, 0, 4 ], [ 0, 0, 0] ];;109gap> A:= AlgebraWithOne( Rationals, [ m ] );;110gap> I:= Ideal( A, [ m ] ); # the two-sided ideal of `A' generated by `m'111<two-sided ideal in <algebra-with-one of dimension 3 over Rationals>,112(1 generators)>113gap> Dimension( I );1142115gap> GeneratorsOfIdeal( I );116[ [ [ 0, 2, 3 ], [ 0, 0, 4 ], [ 0, 0, 0 ] ] ]117gap> BasisVectors( Basis( I ) );118[ [ [ 0, 1, 3/2 ], [ 0, 0, 2 ], [ 0, 0, 0 ] ],119[ [ 0, 0, 1 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ] ]120gap> A:= FullMatrixAlgebra( Rationals, 4 );;121gap> m:= NullMat( 4, 4 );; m[1][4]:=1;;122gap> I:= LeftIdeal( A, [ m ] );123<left ideal in ( Rationals^[ 4, 4 ] ), (1 generators)>124gap> Dimension( I );1254126gap> GeneratorsOfLeftIdeal( I );127[ [ [ 0, 0, 0, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ] ] ]128gap> mats:= [ [[1,0],[0,0]], [[0,1],[0,0]], [[0,0],[0,1]] ];;129gap> A:= Algebra( Rationals, mats );;130gap> # Form the two-sided ideal for which `mats[2]' is known to be131gap> # the unique basis element.132gap> I:= Ideal( A, [ mats[2] ], "basis" );133<two-sided ideal in <algebra of dimension 3 over Rationals>,134(dimension 1)>135]]></Example>136137</Section>138139140<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->141<Section Label="Categories and Properties of Algebras">142<Heading>Categories and Properties of Algebras</Heading>143144<#Include Label="IsFLMLOR">145<#Include Label="IsFLMLORWithOne">146<#Include Label="IsAlgebra">147<#Include Label="IsAlgebraWithOne">148<#Include Label="IsLieAlgebra">149<#Include Label="IsSimpleAlgebra">150<!-- % IsMatrixFLMLOR left out... -->151152<ManSection>153<Meth Name="IsFiniteDimensional" Arg='matalg' Label="for matrix algebras"/>154155<Description>156returns <K>true</K> (always) for a matrix algebra <A>matalg</A>, since157matrix algebras are always finite dimensional.158<P/>159<Example><![CDATA[160gap> A:= MatAlgebra( Rationals, 3 );;161gap> IsFiniteDimensional( A );162true163]]></Example>164</Description>165</ManSection>166167<#Include Label="IsQuaternion">168169</Section>170171172<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->173<Section Label="Attributes and Operations for Algebras">174<Heading>Attributes and Operations for Algebras</Heading>175176<!-- % GeneratorsOfLeftOperatorRing left out.... -->177<!-- % GeneratorsOfLeftOperatorRingWithOne left out.... -->178<#Include Label="GeneratorsOfAlgebra">179<#Include Label="GeneratorsOfAlgebraWithOne">180<#Include Label="ProductSpace">181<#Include Label="PowerSubalgebraSeries">182<#Include Label="AdjointBasis">183<#Include Label="IndicesOfAdjointBasis">184<#Include Label="AsAlgebra">185<#Include Label="AsAlgebraWithOne">186<#Include Label="AsSubalgebra">187<#Include Label="AsSubalgebraWithOne">188<#Include Label="MutableBasisOfClosureUnderAction">189<#Include Label="MutableBasisOfNonassociativeAlgebra">190<#Include Label="MutableBasisOfIdealInNonassociativeAlgebra">191<#Include Label="DirectSumOfAlgebras">192<#Include Label="FullMatrixAlgebraCentralizer">193<#Include Label="RadicalOfAlgebra">194<#Include Label="CentralIdempotentsOfAlgebra">195<#Include Label="DirectSumDecomposition">196<#Include Label="LeviMalcevDecomposition">197<#Include Label="Grading">198199</Section>200201202<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->203<Section Label="Homomorphisms of Algebras">204<Heading>Homomorphisms of Algebras</Heading>205206<#Include Label="[1]{alghom}">207<#Include Label="AlgebraGeneralMappingByImages">208<#Include Label="AlgebraHomomorphismByImages">209<#Include Label="AlgebraHomomorphismByImagesNC">210<#Include Label="AlgebraWithOneGeneralMappingByImages">211<#Include Label="AlgebraWithOneHomomorphismByImages">212<#Include Label="AlgebraWithOneHomomorphismByImagesNC">213<#Include Label="NaturalHomomorphismByIdeal_algebras">214<#Include Label="OperationAlgebraHomomorphism">215<#Include Label="NiceAlgebraMonomorphism">216<#Include Label="IsomorphismFpAlgebra">217<#Include Label="IsomorphismMatrixAlgebra">218<#Include Label="IsomorphismSCAlgebra">219<#Include Label="RepresentativeLinearOperation">220221</Section>222223224<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->225<Section Label="Representations of Algebras">226<Heading>Representations of Algebras</Heading>227228<#Include Label="[1]{algrep}">229<#Include Label="LeftAlgebraModuleByGenerators">230<#Include Label="RightAlgebraModuleByGenerators">231<#Include Label="BiAlgebraModuleByGenerators">232<#Include Label="LeftAlgebraModule">233<#Include Label="RightAlgebraModule">234<#Include Label="BiAlgebraModule">235<#Include Label="GeneratorsOfAlgebraModule">236<#Include Label="IsAlgebraModuleElement">237<#Include Label="IsLeftAlgebraModuleElement">238<#Include Label="IsRightAlgebraModuleElement">239<#Include Label="LeftActingAlgebra">240<#Include Label="RightActingAlgebra">241<#Include Label="ActingAlgebra">242<#Include Label="IsBasisOfAlgebraModuleElementSpace">243<#Include Label="MatrixOfAction">244<#Include Label="SubAlgebraModule">245<#Include Label="LeftModuleByHomomorphismToMatAlg">246<#Include Label="RightModuleByHomomorphismToMatAlg">247<#Include Label="AdjointModule">248<!-- % One would be tempted to call <C>W</C> a left ideal in <C>V</C>, -->249<!-- % but in the current implementation, neither <C>V</C> nor <C>W</C> are themselves -->250<!-- % algebras; note that the element <C>v</C>, although looking like a matrix, -->251<!-- % cannot be multiplied with itself. -->252<#Include Label="FaithfulModule">253<#Include Label="ModuleByRestriction">254<#Include Label="NaturalHomomorphismBySubAlgebraModule">255<#Include Label="DirectSumOfAlgebraModules">256<#Include Label="TranslatorSubalgebra">257258</Section>259</Chapter>260261262<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->263<!-- %% -->264<!-- %E -->265266267268