Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W imf.gd GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany #Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland ## ## This file contains the declarations of operations for the GAP library of ## irreducible maximal finite integral matrix groups. ## ############################################################################# ## #V InfoImf ## ## is the info class for the imf functions ## (see~"Info Functions"). ## DeclareInfoClass( "InfoImf" ); ############################################################################# ## ## Some global variables. ## ############################################################################# ## #F IsImfMatrixGroup( <G> ) ## DeclareFilter( "IsImfMatrixGroup" ); ############################################################################# ## #A ImfRecord( <G> ) ## DeclareAttribute( "ImfRecord", IsGroup, "mutable" ); ############################################################################# ## ## list of global variables not thought for the user ## ############################################################################# ## #F BaseShortVectors( <orbit> ) . . . . . . . . . . . . . . . . . . . . . . . ## ## 'BaseShortVectors' expects as argument an orbit of short vectors under ## some imf matrix group of dimension dim, say. This orbit can be ## considered as a set of generatos of a dim-dimensional Q-vectorspace. ## 'BaseShortVectors' determines a subset B, say, of <orbit> which is a base ## of that vectorspace, and it returns a list of two lists containing ## ## - a list of the position numbers with respect to <orbit> of the elements ## of the base B and ## - the base change matrix B^-1. ## ## Both will be needed by the function 'ImfPermutationToMatrix'. ## DeclareGlobalFunction( "BaseShortVectors" ); ############################################################################# ## #F DisplayImfInvariants( <dim>, <q> ) . . . . . . . . . . . . . . . . . . . #F DisplayImfInvariants( <dim>, <q>, <z> ) . . . . . . . . . . . . . . . . . ## ## 'DisplayImfInvariants' displays some Z-class invariants of the specified ## classes of irreducible maximal finite integral matrix groups in some ## easily readable format. ## ## The default value of z is 1. If any of the arguments is zero, the routine ## loops over all legal values of the respective parameter. ## DeclareGlobalFunction( "DisplayImfInvariants" ); ############################################################################# ## #F DisplayImfReps( <dim>, <q>, <z> ) . . . . . . . . . . . . . . . . . . . . ## ## 'DisplayImfReps' is a subroutine of the 'DisplayImfInvariants' command. ## It displays some Z-class invariants of the zth Z-classes in the qth ## Q-class of the irreducible maximal finite integral matrix groups of ## dimension dim. ## ## If an argument z = 0 has been specified, then all classes in the given ## Q-class will be displayed, otherwise just the zth Z-class is displayed. ## ## This subroutine is considered to be an internal one. Hence the arguments ## are not checked for being in range. Moreover, it is assumed that the imf ## main list IMFList has already been loaded. ## DeclareGlobalFunction( "DisplayImfReps" ); ############################################################################# ## #F ImfInvariants( <dim>, <q> ) . . . . . . . . . . . . . . . . . . . . . . . #F ImfInvariants( <dim>, <q>, <z> ) . . . . . . . . . . . . . . . . . . . . ## ## 'ImfInvariants' returns a record of Z-class invariants of the zth Z-class ## in the qth Q-class of irreducible maximal finite integral matrix groups ## of dimension dim. The default value of z is 1. ## ## Assume that G is a representative group of the specified Z-class. Then ## the resulting record contains the following components: ## ## size group size of G, ## isSolvable true, if G is solvable, ## isomorphismType isomorphism type of G, ## elementaryDivisors elementary divisors of G, ## minimalNorm norm of the short vectors associated to G, ## sizesOrbitsShortVectors a list of the sizes of the orbits of short ## vectors associated to G, ## maximalQClass Q-class number of coresponding rational imf ## class (only if it is different from q). ## ## If a value z > 1 has been specified for a dimension for which no Z-class ## representatives are available, the function will display an appropriate ## message and return the value 'false'. ## DeclareGlobalFunction( "ImfInvariants" ); ############################################################################# ## #F IMFLoad( <dim> ) . . . . . . . . load a secondary file of the imf library ## ## 'IMFLoad' loads the imf main list and, if dim > 0, the list of matrices ## containing the Gram matrices and the lists of generators for the ## irreducible maximal finite integral matrix groups of dimension <dim>. ## Nothing is done if the required lists have already been loaded. ## ## 'IMFLoad' finds the files in the directory specified by 'GRPNAME'. This ## variable is set in the init file 'LIBNAME/\"init.g\"'. ## ## The given dimension is not checked to be in range. ## DeclareGlobalFunction( "IMFLoad" ); ############################################################################# ## #F ImfMatrixGroup( <dim>, <q> ) . . . . . . . . . . . . . . . . . . . . . . #F ImfMatrixGroup( <dim>, <q>, <z> ) . . . . . . . . . . . . . . . . . . . . ## ## 'ImfMatrixGroup' returns the representative of the zth Z-class in the qth ## Q-class of the irreducible maximal finite integral matrix groups of ## dimension dim. The default value of z is 1. ## ## If a value z > 1 has been specified for a dimension for which no Z-class ## representatives are available, the function will display an appropriate ## message and return the value 'false'. ## DeclareGlobalFunction( "ImfMatrixGroup" ); ############################################################################# ## #F ImfNumberQClasses( <dim> ) . . . . . . . . . . . . . . . . . . . . . . . ## ## 'ImfNumberQClasses' returns the number of available Q-classes of ## irreducible maximal finite subgroups of dimension dim, i. e., the number ## of Q-classes of irreducible maximal finite subgroups of GL(dim,Z), if dim ## is at most 11 or a prime, or the number of Q-classes of irreducible ## maximal finite subgroups of GL(dim,Q), else. ## DeclareGlobalFunction( "ImfNumberQClasses" ); ############################################################################# ## #F ImfNumberQQClasses( <dim> ) . . . . . . . . . . . . . . . . . . . . . . . ## ## 'ImfNumberQQClasses' returns the number of Q-classes of irreducible ## maximal finite subgroups of GL(dim,Q). ## DeclareGlobalFunction( "ImfNumberQQClasses" ); ############################################################################# ## #F ImfNumberZClasses( <dim>, <q> ) . . . . . . . . . . . . . . . . . . . . . ## ## 'ImfNumberZClasses' returns the number of available class representatives ## in the qth Q-class of irreducible maximal finite integral matrix groups ## of dimension dim, i. e., the number of Z-classes in that Q-class, if dim ## is at most 11 or a prime, or just the value 1, else. ## DeclareGlobalFunction( "ImfNumberZClasses" ); ############################################################################# ## #F ImfPositionNumber( [ <dim>, <q> ] ) . . . . . . . . . . . . . . . . . . . #F ImfPositionNumber( [ <dim>, <q>, <z> ] ) . . . . . . . . . . . . . . . . ## ## 'ImfPositionNumber' loads the imf main list if it is not yet available. ## Then it checks the given arguments and returns the position number of the ## specified Z-class representative within the list of all representatives ## of dimension dim which is still in the original order as submitted to ## us by LehrstuhL B. The default value of z is 1. ## DeclareGlobalFunction( "ImfPositionNumber" ); ############################################################################# ## #F OrbitShortVectors( <gens>, <rep> ) . . . . . . . . . . . . . . . . . . . ## ## 'OrbitShortVectors' is a subroutine of the 'PermGroupImfGroup' command. ## It returns the orbit of the short vector <rep> under the matrix group ## generators given in list <gens>. ## DeclareGlobalFunction( "OrbitShortVectors" ); ############################################################################# ## #F IsomorphismPermGroupImfGroup( <M> ) . . . . . . . . . . . . . . . . . . . #F IsomorphismPermGroupImfGroup( <M>, <n> ) . . . . . . . . . . . . . . . . ## ## 'IsomorphismPermGroupImfGroup' returns an isomorphism from the given ## irreducible maximal finite integral matrix group to the permutation grou ## induced by the action of M on its nth orbit on the set of short vectors. ## The default value of n is 1. ## DeclareGlobalFunction( "IsomorphismPermGroupImfGroup" ); ############################################################################# ## #E