Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W imf.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany #Y Copyright (C) 2000, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This is the main secondary file of the GAP library of irreducible maximal ## finite (imf) integral matrix groups. It contains a list IMFList of length ## 31 and a record IMFRec. ## ## Each entry IMFList[dim] of IMFList is a record which contains information ## about the Z-class representative groups (in case dim < 12 or dim in ## {13,17,19,23}, or about the Q-class representative groups (in case dim in ## {12,14,15,16,18,20,21,22,24,25,26,27,28,29,30,31}) of diminsion dim. More ## precisely, each of these records contains the following components: ## ## IMFList[dim].size the group size, ## IMFList[dim].isomorphismType the isomorphism type, ## IMFList[dim].isSolvable true, if the group is solvable, or false, ## else, ## IMFList[dim].elementaryDivisors the elementary divisors of the quadratic ## form, ## IMFList[dim].minimalNorm the norm of the "short vectors", ## IMFList[dim].orbitReps representatives of the orbits of short ## vectors, ## IMFList[dim].degrees sizes of the orbits of short vectors, ## i. e., the degrees of permutation ## representations on the orbits of the ## short vectors. ## ## Additional lists with the associated Gram matrices and matrix generators ## are provided in the files imf1to9.grp to imf31.grp of this library and ## will be loaded only if necessary. ## ## The record IMFRec contains the following components: ## ## IMFRec.maximalDimension the maximal dimension covered by the library, ## i.e., 31, ## IMFRec.numberQQClasses a list containing for each dimension dim the ## number of Q-classes of imf subgroups of ## GL(dim,Q), ## IMFRec.numberQClasses a list containing for each dimension dim the ## number of Q-classes of imf subgroups of dimension ## dim available in the library, i. e., the number ## of Q-classes of imf subgroups of GL(dim,Z), if ## dim is at most 11 or a prime at most 23, or the ## number of Q-classes of imf subgroups of ## GL(dim,Q), else, ## IMFRec.repsAreZReps a list containing for each dimension dim a flag ## which is true, if dim is at most 11 or a prime at ## most 23, or false, else, ## IMFRec.bNumbers a list containing for each dimension dim a list ## of lists which, for each available Q-class, give ## the list of the position numbers of its ## representatives with respect to the lists in ## IMFList, ## IMFRec.maximalQClasses a list containing for each dimension dim a list ## of lists which, for each available Q-class, give ## the Q-class number of the corresponding rational ## imf class. ## ############################################################################# ## ## BindGlobal( "IMFRec", rec( ) ); IMFRec.maximalDimension := 31; IMFRec.numberQQClasses := [1,2,1,3,2,6,2,9,2,8,2,19,4,12,6,31,3,17,2,31,8,12,4,65,5,16,5,37,2,33,4]; IMFRec.numberQClasses := [1,2,1,5,2,9,3,16,8,21,2,19,4,12,6,31,6,17,2,31,8,12,7,65,5,16,5,37,2,33,4]; IMFRec.repsAreZReps := [true,true,true,true,true,true,true,true,true,true,true,false,true,false, false,false,true,false,true,false,false,false,true,false,false,false, false,false,false,false,false]; IMFRec.bNumbers := [ [[1]], [[1],[2]], [[1..3]], [[2],[3],[5,6],[1],[4]], [[1..3],[4..7]], [[1..3],[7],[8,9],[12,13],[14],[15..17],[4,5],[6],[10,11]], [[1..3],[6,7],[4,5]], [[1..3],[4],[5],[6],[7],[14,15],[16],[18,19],[23..26],[11,12],[20,21],[22], [8,9],[10],[13],[17]], [[1..3],[15..18],[4..7],[8,9],[10,11],[12,13],[14],[19,20]], [[1..3],[14..19],[25],[32,33],[38..41],[42,43],[44,45],[46],[4],[5],[6,7], [8,9],[10,11],[12,13],[20..22],[23,24],[26,27],[28],[29,30],[31],[34..37]], [[1..3],[4..9]], [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16], [17],[18],[19]], [[1..3],[4..7],[8..13],[14..17]], [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]], [[1],[2],[3],[4],[5],[6]], [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16], [17],[18],[19],[20],[21],[22],[23],[24],[25],[26],[27],[28],[29],[30], [31]], [[1..3],[4..9],[17..24],[10,11],[12,13],[14..16]], [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16], [17]], [[1..3],[4..9]], [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16], [17],[18],[19],[20],[21],[22],[23],[24],[25],[26],[27],[28],[29],[30], [31]], [[1],[2],[3],[4],[5],[6],[7],[8]], [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]], [[1..8],[9..11],[22..24],[25..28],[16..21],[12,13],[14,15]], [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16], [17],[18],[19],[20],[21],[22],[23],[24],[25],[26],[27],[28],[29],[30],[31], [32],[33],[34],[35],[36],[37],[38],[39],[40],[41],[42],[43],[44],[45],[46], [47],[48],[49],[50],[51],[52],[53],[54],[55],[56],[57],[58],[59],[60],[61], [62],[63],[64],[65]], [[1],[2],[3],[4],[5]], [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16]], [[1],[2],[3],[4],[5]], [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16], [17],[18],[19],[20],[21],[22],[23],[24],[25],[26],[27],[28],[29],[30],[31], [32],[33],[34],[35],[36],[37]], [[1],[2]], [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16], [17],[18],[19],[20],[21],[22],[23],[24],[25],[26],[27],[28],[29],[30],[31], [32],[33]], [[1],[2],[3],[4]]]; IMFRec.maximalQClasses := [ [1], [1,2], [1], [1,2,3,1,2], [1,2], [1,2,3,4,5,6,1,1,2], [1,2,2], [1,2,3,4,5,6,7,8,9,3,4,4,5,5,5,6], [1,2,1,1,1,1,1,2], [1,2,3,4,5,6,7,8,1,1,1,1,1,1,2,2,3,3,3,4,4], [1,2], [1..19], [1..4], [1..12], [1..6], [1..31], [1,2,3,1,1,2], [1..17], [1,2], [1..31], [1..8], [1..12], [1,2,3,4,1,2,2], [1..65], [1..5], [1..16], [1..5], [1..37], [1,2], [1..33], [1..4]]; if IsBound( i ) then IMFRec.i := i; fi; BindGlobal( "IMFList", [ ] ); for i in [ 1 .. 31 ] do IMFList[i] := rec( ); od; ############################################################################# ## ## Sizes of the class representatives of the irreducible maximal finite ## integral matrix groups. ## IMFList[1].size := [ # Z-classes of dimension 1 2]; IMFList[2].size := [ # Z-classes of dimension 2 8, 12]; IMFList[3].size := [ # Z-classes of dimension 3 48, 48, 48]; IMFList[4].size := [ # Z-classes of dimension 4 384, 1152, 288, 144, 240, 240]; IMFList[5].size := [ # Z-classes of dimension 5 3840, 3840, 3840, 1440, 1440, 1440, 1440]; IMFList[6].size := [ # Z-classes of dimension 6 46080, 46080, 46080, 4608, 4608, 23040, 10368, 103680, 103680, 288, 288, 10080, 10080, 672, 240, 240, 240]; IMFList[7].size := [ # Z-classes of dimension 7 645120, 645120, 645120, 80640, 80640, 2903040, 2903040]; IMFList[8].size := [ # Z-classes of dimension 8 10321920, 10321920, 10321920, 2654208, 696729600, 6912, 497664, 62208, 62208, 41472, 725760, 725760, 2592, 115200, 115200, 28800, 57600, 1440, 1440, 1152, 1152, 3456, 672, 672, 672, 672]; IMFList[9].size := [ # Z-classes of dimension 9 185794560, 185794560, 185794560, 663552, 663552, 663552, 663552, 36864, 36864, 2304, 2304, 165888, 165888, 1152, 7257600, 7257600, 7257600, 7257600, 1440, 1440]; IMFList[10].size := [ # Z-classes of dimension 10 3715891200, 3715891200, 3715891200, 1857945600, 737280, 29491200, 29491200, 122880, 122880, 7680, 7680, 23040, 23040, 4147200, 4147200, 4147200, 4147200, 4147200, 4147200, 2073600, 2073600, 2073600, 480, 480, 29859840, 1866240, 1866240, 38880, 23040, 23040, 103680, 311040, 311040, 8640, 8640, 8640, 8640, 1440, 1440, 1440, 1440, 79833600, 79833600, 2640, 2640, 2640]; IMFList[11].size := [ # Z-classes of dimension 11 81749606400, 81749606400, 81749606400, 958003200, 958003200, 958003200, 958003200, 958003200, 958003200]; IMFList[12].size := [ # Q-classes of dimension 12 1961990553600, 9172942848, 21499084800, 2149908480, 78382080, 31104, 115200, 82944000, 2400, 2880, 1440, 8640, 203212800, 903168, 2688, 2688, 60480, 4032, 12454041600]; IMFList[13].size := [ # Z-classes of dimension 13 51011754393600, 51011754393600, 51011754393600, 174356582400, 174356582400, 174356582400, 174356582400, 22464, 22464, 22464, 22464, 22464, 22464, 31200, 31200, 31200, 31200]; IMFList[14].size := [ # Q-classes of dimension 14 1428329123020800, 16855282483200, 180592312320, 8491392, 48384, 17418240, 2615348736000, 10080, 80640, 4368, 2184, 4368]; IMFList[15].size := [ # Q-classes of dimension 15 42849873690624000, 41845579776000, 103680, 2903040, 17915904000, 10080]; IMFList[16].size := [ # Q-classes of dimension 16 1371195958099968000, 970864271032320000, 42268920643584, 89181388800, 17336861982720, 1036800, 4180377600, 95551488, 3732480, 79626240000, 288000, 57600, 1658880000, 3628800, 138240, 230400, 4147200, 172800, 86400, 2880, 17280, 960, 4032, 4032, 60480, 4032, 903168, 240, 240, 711374856192000, 9792]; IMFList[17].size := [ # Z-classes of dimension 17 46620662575398912000, 46620662575398912000, 46620662575398912000, 12804747411456000, 12804747411456000, 12804747411456000, 12804747411456000, 12804747411456000, 12804747411456000, 17825792, 17825792, 69632, 69632, 4896, 4896, 4896, 32640, 32640, 32640, 32640, 32640, 32640, 32640, 32640]; IMFList[18].size := [ # Q-classes of dimension 18 1678343852714360832000, 3916800, 6687075336192000, 50388480, 1872381094133760, 82944000, 105345515520000, 28800, 8640, 43545600, 6145155072000, 1820786688, 225792, 9792, 4896, 243290200817664000, 13680]; IMFList[19].size := [ # Z-classes of dimension 19 63777066403145711616000, 63777066403145711616000, 63777066403145711616000, 4865804016353280000, 4865804016353280000, 4865804016353280000, 4865804016353280000, 4865804016353280000, 4865804016353280000]; IMFList[20].size := [ # Q-classes of dimension 20 2551082656125828464640000, 243468982907043840, 656916480, 380160, 11520, 224685731296051200, 193491763200, 103195607040000, 829440, 103680, 4147200, 311040, 95551488000000, 120000, 172800, 161280, 1774080, 10080, 102181884343418880000, 483840, 80640, 12746807377920000, 15840, 13939200, 13939200, 15840, 31680, 479001600, 15840, 15840, 13680]; IMFList[21].size := [ # Q-classes of dimension 21 107145471557284795514880000, 146794677780086784000, 2903040, 52254720, 2903040, 1512000, 10080, 2248001455555215360000]; IMFList[22].size := [ # Q-classes of dimension 22 4714400748520531002654720000, 110361968640, 29658516531078758400, 1835540262420480000, 5748019200, 177408000, 3592512000, 51704033477769953280000, 12144, 12144, 24288, 24288]; IMFList[23].size := [ # Z-classes of dimension 23 1240896803466478878720000, 1240896803466478878720000, 1240896803466478878720000, 1240896803466478878720000, 1240896803466478878720000, 1240896803466478878720000, 1240896803466478878720000, 1240896803466478878720000, 216862434431944426122117120000, 216862434431944426122117120000, 216862434431944426122117120000, 85571854663680, 85571854663680, 41783132160, 41783132160, 489646080, 489646080, 489646080, 489646080, 489646080, 489646080, 84610842624000, 84610842624000, 84610842624000, 991533312000, 991533312000, 991533312000, 991533312000]; IMFList[24].size := [ # Q-classes of dimension 24 10409396852733332453861621760000, 2029289625631919702016000000, 8315553613086720000, 1728000, 1682857609853487022080, 940584960, 2773263883425546240000, 103680, 67184640, 4270826380475341209600, 12287500930252800, 59719680, 1934917632, 34560, 1981355655168, 1935360, 1161216, 31022420086661971968000000, 137594142720000000, 79626240000, 143327232000000, 145152000, 11520000, 16588800, 230400, 1728000, 138240, 311040, 4147200, 149299200, 17280, 247772652503040000, 387072, 4894274617344, 387072, 14450688, 5806080, 14450688, 387072, 52416, 112896, 30240, 103680, 5760, 34560, 7315660800, 32514048, 16128, 16128, 310206304349061120000, 134784, 74724249600, 1872, 12441600, 17915904000, 86400, 14400, 103680, 8064, 5376, 1820786688, 1209600, 80640, 31680, 2640]; IMFList[25].size := [ # Q-classes of dimension 25 520469842636666622693081088000000, 743008370688000000, 2073600, 235200, 806582922253211271168000000]; IMFList[26].size := [ # Q-classes of dimension 26 27064431817106664380040216576000000, 666248915354153228697600, 1009262592, 1946880000, 60800435652415979520000, 18720000, 1268047872, 24261120, 55024220160, 18720000, 62400, 31200, 31200, 187200, 1046139494400, 21777738900836704321536000000]; IMFList[27].size := [ # Q-classes of dimension 27 1461479318123759876522171695104000000, 2293666840313856000000, 725760, 22464, 609776689223427721003008000000]; IMFList[28].size := [ # Q-classes of dimension 28 81842841814930553085241614925824000000, 111929817779497742421196800, 13570563765858519346053120, 231158159769600000000, 1704603285530812549693440000, 606790169395200, 144207476195328, 203212800, 13005619200, 4682022912, 38158848, 9539712, 38158848, 13680098021793595392000000, 55024220160, 29030400, 2090188800, 349440, 1672151040, 2419200, 101896704, 1161216, 290304, 504000, 348364800, 80640, 2419200, 60480, 15692092416000, 483840, 52416, 26208, 26208, 26208, 26208, 48720, 17683523987479403909087232000000]; IMFList[29].size := [ # Q-classes of dimension 29 4746884825265972078944013665697792000000, 530505719624382117272616960000000]; IMFList[30].size := [ # Q-classes of dimension 30 284813089515958324736640819941867520000000, 20147367200309593635815424000, 6419592322744320000000, 1437659997167803170816000000, 12487741686153216000000, 16444762714275840, 95551488000000, 180551034077184000, 17915904000, 3052870564457742336000000, 110398464000, 110398464000, 16855282483200, 21499084800, 203212800, 3502105093579160420352000000, 103680, 78382080, 251073478656000, 67184640, 8640, 74649600, 483840, 17418240, 172800, 60480, 30240, 7257600, 483840, 48720, 29760, 59520, 16445677308355845635451125760000000]; IMFList[31].size := [ # Q-classes of dimension 31 17658411549989416133671730836395786240000000, 327360, 1488000, 526261673867387060334436024320000000]; ############################################################################# ## ## Elementary divisors of the quadratic forms associated to the class ## representatives of the irreducible maximal finite integral matrix groups, ## given in form of lists [ d1, exp1, d2, exp2, ... ]. ## IMFList[1].elementaryDivisors := [ # Z-classes of dimension 1 [1,1]]; IMFList[2].elementaryDivisors := [ # Z-classes of dimension 2 [1,2], [1,1,3,1]]; IMFList[3].elementaryDivisors := [ # Z-classes of dimension 3 [1,3], [1,1,4,2], [1,2,4,1]]; IMFList[4].elementaryDivisors := [ # Z-classes of dimension 4 [1,4], [1,2,2,2], [1,2,3,2], [1,1,3,2,9,1], [1,3,5,1], [1,1,5,3]]; IMFList[5].elementaryDivisors := [ # Z-classes of dimension 5 [1,5], [1,4,4,1], [1,1,4,4], [1,1,6,4], [1,4,6,1], [1,1,3,3,6,1], [1,1,2,3,6,1]]; IMFList[6].elementaryDivisors := [ # Z-classes of dimension 6 [1,6], [1,4,2,2], [1,2,2,4], [1,4,4,2], [1,2,4,4], [1,1,2,4,4,1], [1,3,3,3], [1,5,3,1], [1,1,3,5], [1,3,3,1,12,2], [1,2,4,1,12,3], [1,1,7,5], [1,5,7,1], [1,3,7,3], [1,3,5,3], [1,3,5,1,10,2], [1,2,2,1,10,3]]; IMFList[7].elementaryDivisors := [ # Z-classes of dimension 7 [1,7], [1,6,4,1], [1,1,4,6], [1,1,8,6], [1,6,8,1], [1,6,2,1], [1,1,2,6]]; IMFList[8].elementaryDivisors := [ # Z-classes of dimension 8 [1,8], [1,6,2,2], [1,2,2,6], [1,4,2,4], [1,8], [1,4,6,4], [1,4,3,4], [1,3,3,4,9,1], [1,1,3,4,9,3], [1,2,3,4,9,2], [1,7,9,1], [1,1,9,7], [1,1,3,3,9,3,27,1], [1,6,5,2], [1,2,5,6], [1,4,5,4], [1,1,5,6,25,1], [1,2,5,2,15,4], [1,4,3,2,15,2], [1,2,2,2,6,4], [1,4,3,2,6,2], [1,2,2,2,6,2,12,2], [1,1,3,4,21,3], [1,3,7,4,21,1], [1,5,7,2,21,1], [1,1,3,2,21,5]]; IMFList[9].elementaryDivisors := [ # Z-classes of dimension 9 [1,9], [1,8,4,1], [1,1,4,8], [1,6,4,3], [1,3,4,6], [1,7,4,2], [1,2,4,7], [1,5,4,4], [1,4,4,5], [1,4,4,4,16,1], [1,1,4,4,16,4], [1,2,4,6,16,1], [1,1,4,6,16,2], [1,2,4,5,16,2], [1,1,10,8], [1,8,10,1], [1,1,5,7,10,1], [1,1,2,7,10,1], [1,1,5,3,10,1,20,4], [1,4,2,1,4,3,20,1]]; IMFList[10].elementaryDivisors := [ # Z-classes of dimension 10 [1,10], [1,8,2,2], [1,2,2,8], [1,1,2,8,4,1], [1,4,2,2,4,4], [1,8,4,2], [1,2,4,8], [1,6,4,4], [1,4,4,6], [1,4,4,4,8,2], [1,2,2,4,8,4], [1,4,2,1,4,4,8,1], [1,1,2,4,4,1,8,4], [1,8,3,2], [1,2,3,8], [1,8,6,2], [1,2,6,8], [1,2,2,6,6,2], [1,2,3,6,6,2], [1,1,3,8,9,1], [1,1,3,7,6,1,18,1], [1,1,3,1,6,7,18,1], [1,4,2,2,4,2,12,2], [1,2,3,2,6,2,12,4], [1,5,3,5], [1,4,3,5,9,1], [1,1,3,5,9,4], [1,1,3,4,9,4,27,1], [1,5,3,3,12,2], [1,2,4,3,12,5], [1,5,3,5], [1,5,3,3,6,2], [1,2,2,3,6,5], [1,4,3,4,6,1,18,1], [1,1,3,1,6,4,18,4], [1,2,2,2,6,5,18,1], [1,1,3,5,9,2,18,2], [1,6,6,4], [1,4,6,6], [1,4,2,2,6,4], [1,4,3,2,6,4], [1,9,11,1], [1,1,11,9], [1,7,11,3], [1,3,11,7], [1,5,11,5]]; IMFList[11].elementaryDivisors := [ # Z-classes of dimension 11 [1,11], [1,10,4,1], [1,1,4,10], [1,1,12,10], [1,1,3,10], [1,1,4,9,12,1], [1,1,3,9,12,1], [1,10,3,1], [1,10,12,1]]; IMFList[12].elementaryDivisors := [ # Q-classes of dimension 12 [1,12], [1,6,2,6], [1,10,3,2], [1,6,3,6], [1,6,3,6], [1,6,2,2,6,4], [1,6,5,6], [1,9,5,3], [1,8,2,1,10,3], [1,8,5,2,10,2], [1,6,15,6], [1,6,15,6], [1,10,7,2], [1,6,7,6], [1,6,2,4,14,2], [1,6,14,6], [1,6,3,4,21,2], [1,6,21,6], [1,11,13,1]]; IMFList[13].elementaryDivisors := [ # Z-classes of dimension 13 [1,13], [1,12,4,1], [1,1,4,12], [1,1,14,12], [1,12,14,1], [1,1,7,11,14,1], [1,1,2,11,14,1], [1,6,3,7], [1,7,3,6], [1,7,3,5,12,1], [1,6,3,6,12,1], [1,1,4,5,12,7], [1,1,4,6,12,6], [1,1,2,8,10,4], [1,9,5,3,10,1], [1,1,2,3,10,9], [1,4,5,8,10,1]]; IMFList[14].elementaryDivisors := [ # Q-classes of dimension 14 [1,14], [1,12,2,2], [1,7,3,7], [1,7,3,7], [1,8,2,4,6,2], [1,7,3,5,6,2], [1,13,15,1], [1,8,5,5,15,1], [1,8,2,5,30,1], [1,7,13,7], [1,7,3,4,39,3], [1,9,13,4,39,1]]; IMFList[15].elementaryDivisors := [ # Q-classes of dimension 15 [1,15], [1,14,16,1], [1,10,3,5], [1,9,2,5,6,1], [1,12,6,3], [1,10,7,5]]; IMFList[16].elementaryDivisors := [ # Q-classes of dimension 16 [1,16], [1,16], [1,8,2,8], [1,8,2,8], [1,8,3,8], [1,8,3,8], [1,8,3,8], [1,8,6,8], [1,8,6,8], [1,12,5,4], [1,4,5,12], [1,10,5,6], [1,8,5,8], [1,8,5,8], [1,8,2,4,10,4], [1,8,10,8], [1,8,3,4,15,4], [1,8,15,8], [1,8,15,8], [1,8,15,8], [1,8,30,8], [1,8,6,4,30,4], [1,8,3,4,21,4], [1,8,3,2,21,6], [1,8,21,8], [1,8,21,8], [1,10,7,4,21,2], [1,12,11,4], [1,12,55,4], [1,15,17,1], [1,11,17,5]]; IMFList[17].elementaryDivisors := [ # Z-classes of dimension 17 [1,17], [1,16,4,1], [1,1,4,16], [1,1,18,16], [1,16,18,1], [1,1,9,15,18,1], [1,1,2,15,18,1], [1,16,2,1], [1,1,2,16], [1,9,4,8], [1,8,4,9], [1,1,4,8,16,8], [1,8,4,8,16,1], [1,1,9,7,18,1,36,8], [1,8,2,1,4,8], [1,8,2,1,4,7,36,1], [1,1,3,8,6,8], [1,9,2,7,6,1], [1,8,2,8,12,1], [1,8,2,8,6,1], [1,1,2,8,4,7,12,1], [1,1,3,7,6,9], [1,1,6,8,12,8], [1,1,3,7,6,8,12,1]]; IMFList[18].elementaryDivisors := [ # Q-classes of dimension 18 [1,18], [1,10,2,8], [1,15,3,3], [1,13,3,5], [1,9,3,9], [1,9,5,9], [1,16,10,2], [1,9,5,1,10,8], [1,9,3,3,15,6], [1,9,3,7,30,2], [1,15,7,3], [1,9,7,9], [1,9,7,9], [1,9,17,9], [1,8,2,5,34,5], [1,17,19,1], [1,9,19,9]]; IMFList[19].elementaryDivisors := [ # Z-classes of dimension 19 [1,19], [1,1,4,18], [1,18,4,1], [1,1,20,18], [1,18,20,1], [1,18,5,1], [1,1,5,17,20,1], [1,1,4,17,20,1], [1,1,5,18]]; IMFList[20].elementaryDivisors := [ # Q-classes of dimension 20 [1,20], [1,10,2,10], [1,10,2,10], [1,10,2,10], [1,12,3,8], [1,10,3,10], [1,10,3,6,6,4], [1,16,6,4], [1,8,2,8,6,2,12,2], [1,14,6,5,54,1], [1,12,6,8], [1,10,3,2,6,8], [1,15,5,5], [1,17,5,3], [1,15,5,1,30,4], [1,10,7,10], [1,10,7,10], [1,10,7,10], [1,19,21,1], [1,18,2,1,42,1], [1,13,3,1,6,5,42,1], [1,18,11,2], [1,18,11,2], [1,14,11,6], [1,10,11,10], [1,10,11,10], [1,10,2,6,22,4], [1,10,3,8,33,2], [1,10,3,4,33,6], [1,10,33,10], [1,13,19,6,57,1]]; IMFList[21].elementaryDivisors := [ # Q-classes of dimension 21 [1,21], [1,18,2,3], [1,15,2,6], [1,19,3,2], [1,14,6,6,12,1], [1,1,2,1,10,19], [1,13,5,2,15,5,30,1], [1,20,22,1]]; IMFList[22].elementaryDivisors := [ # Q-classes of dimension 22 [1,22], [1,1,3,19,6,2], [1,11,3,11], [1,20,12,2], [1,10,3,10,12,1,36,1], [1,21,5,1], [1,1,5,20,15,1], [1,21,23,1], [1,19,23,3], [1,17,23,5], [1,15,23,7], [1,11,23,11]]; IMFList[23].elementaryDivisors := [ # Z-classes of dimension 23 [1,1,24,22], [1,22,24,1], [1,22,6,1], [1,1,3,21,24,1], [1,1,2,21,6,1], [1,1,3,21,6,1], [1,1,8,21,24,1], [1,1,6,22], [1,23], [1,22,4,1], [1,1,4,22], [1,1,2,22], [1,22,2,1], [1,1,8,22], [1,22,8,1], [1,1,12,22], [1,22,12,1], [1,1,3,21,12,1], [1,22,3,1], [1,1,3,22], [1,1,4,21,12,1], [1,23], [1,22,4,1], [1,1,4,22], [1,1,2,21,6,1], [1,22,6,1], [1,1,3,21,6,1], [1,1,6,22]]; IMFList[24].elementaryDivisors := [ # Q-classes of dimension 24 [1,24], [1,24], [1,24], [1,16,2,8], [1,12,2,12], [1,12,2,12], [1,20,3,4], [1,20,3,4], [1,16,3,8], [1,12,3,12], [1,12,3,12], [1,12,2,8,6,4], [1,12,2,4,6,8], [1,12,2,4,6,8], [1,12,6,12], [1,12,6,12], [1,12,6,12], [1,23,25,1], [1,18,5,6], [1,12,5,12], [1,12,5,12], [1,12,5,12], [1,16,2,2,10,6], [1,16,5,4,10,4], [1,16,10,8], [1,12,5,4,10,8], [1,12,10,12], [1,12,5,4,15,8], [1,12,15,12], [1,12,15,12], [1,12,3,4,15,4,30,4], [1,20,7,4], [1,20,7,4], [1,12,7,12], [1,12,7,12], [1,12,2,8,14,4], [1,12,2,8,14,4], [1,12,14,12], [1,12,14,12], [1,12,13,12], [1,18,2,6], [1,12,2,12], [1,12,10,12], [1,12,15,4,30,8], [1,12,30,12], [1,12,3,8,21,4], [1,12,21,12], [1,12,6,8,42,4], [1,12,42,12], [1,22,13,2], [1,22,13,2], [1,12,3,10,39,2], [1,12,3,10,39,2], [1,18,5,2,15,4], [1,12,3,6,15,6], [1,12,3,6,15,6], [1,12,3,4,6,2,30,6], [1,14,3,2,6,7,30,1], [1,20,7,4], [1,18,2,2,14,4], [1,15,7,6,21,3], [1,18,5,2,35,4], [1,12,7,6,35,6], [1,12,22,12], [1,16,11,7,55,1]]; IMFList[25].elementaryDivisors := [ # Q-classes of dimension 25 [1,25], [1,20,6,5], [1,16,6,8,36,1], [1,16,7,8,14,1], [1,24,26,1]]; IMFList[26].elementaryDivisors := [ # Q-classes of dimension 26 [1,26], [1,13,3,13], [1,12,3,14], [1,2,2,16,10,8], [1,24,14,2], [1,26], [1,1,3,25], [1,19,3,7], [1,13,3,13], [1,13,5,13], [1,16,5,9,15,1], [1,12,2,8,10,6], [1,13,3,3,15,10], [1,13,3,5,15,6,30,2], [1,13,3,11,42,2], [1,25,27,1]]; IMFList[27].elementaryDivisors := [ # Q-classes of dimension 27 [1,27], [1,24,10,3], [1,19,7,7,28,1], [1,16,13,10,52,1], [1,26,28,1]]; IMFList[28].elementaryDivisors := [ # Q-classes of dimension 28 [1,28], [1,14,3,14], [1,14,2,14], [1,21,5,7], [1,24,2,4], [1,14,3,10,6,4], [1,14,3,14], [1,16,5,10,15,2], [1,16,2,10,30,2], [1,16,2,8,6,4], [1,14,13,14], [1,14,3,8,39,6], [1,18,13,8,39,2], [1,26,15,2], [1,2,2,26], [1,2,2,26], [1,2,2,26], [1,2,2,26], [1,12,2,14,4,2], [1,2,3,26], [1,14,3,14], [1,4,3,22,6,2], [1,12,3,4,6,10,18,2], [1,19,5,9], [1,21,5,3,10,4], [1,21,5,1,10,6], [1,1,3,13,15,13,45,1], [1,13,3,3,15,11,45,1], [1,13,3,13,15,1,45,1], [1,2,5,10,10,1,30,14,90,1], [1,20,13,6,26,2], [1,14,3,8,39,6], [1,13,3,5,39,9,117,1], [1,14,39,14], [1,4,2,10,78,14], [1,9,29,19], [1,27,29,1]]; IMFList[29].elementaryDivisors := [ # Q-classes of dimension 29 [1,29], [1,28,30,1]]; IMFList[30].elementaryDivisors := [ # Q-classes of dimension 30 [1,30], [1,15,3,15], [1,6,6,24], [1,25,3,5], [1,5,7,25], [1,15,7,15], [1,15,5,15], [1,15,3,9,6,6], [1,18,6,12], [1,27,11,3], [1,21,11,9], [1,15,11,15], [1,18,2,10,6,2], [1,20,3,10], [1,20,7,10], [1,28,16,2], [1,24,4,1,12,5], [1,15,3,15], [1,15,3,13,48,2], [1,24,2,1,6,5], [1,12,2,11,6,7], [1,20,3,4,6,5,18,1], [1,12,2,3,6,15], [1,14,3,4,6,11,18,1], [1,15,5,9,30,6], [1,15,3,5,21,10], [1,15,3,3,21,12], [1,24,6,1,42,5], [1,15,7,9,42,6], [1,15,29,15], [1,23,31,7], [1,15,31,15], [1,29,31,1]]; IMFList[31].elementaryDivisors := [ # Q-classes of dimension 31 [1,31], [1,20,2,10,4,1], [1,19,5,12], [1,30,32,1]]; ############################################################################# ## ## Solvability of the class representatives of the irreducible maximal ## finite integral matrix groups. ## IMFList[1].isSolvable := [ # Z-classes of dimension 1 true]; IMFList[2].isSolvable := [ # Z-classes of dimension 2 true, true]; IMFList[3].isSolvable := [ # Z-classes of dimension 3 true, true, true]; IMFList[4].isSolvable := [ # Z-classes of dimension 4 true, true, true, true, false, false]; IMFList[5].isSolvable := # Z-classes of dimension 5 ListWithIdenticalEntries( 7, false ); IMFList[6].isSolvable := [ # Z-classes of dimension 6 false, false, false, true, true, false, true, false, false, true, true, false, false, false, false, false, false]; IMFList[7].isSolvable := # Z-classes of dimension 7 ListWithIdenticalEntries( 7, false ); IMFList[8].isSolvable := [ # Z-classes of dimension 8 false, false, false, true, false, true, true, true, true, true, false, false, true, false, false, false, false, false, false, true, true, true, false, false, false, false]; IMFList[9].isSolvable := [ # Z-classes of dimension 9 false, false, false, true, true, true, true, true, true, true, true, true, true, true, false, false, false, false, false, false]; IMFList[10].isSolvable := # Z-classes of dimension 10 ListWithIdenticalEntries( 46, false ); IMFList[11].isSolvable := # Z-classes of dimension 11 ListWithIdenticalEntries( 9, false ); IMFList[12].isSolvable := [ # Q-classes of dimension 12 false, true, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false]; IMFList[13].isSolvable := # Z-classes of dimension 13 ListWithIdenticalEntries( 17, false ); IMFList[14].isSolvable := # Q-classes of dimension 14 ListWithIdenticalEntries( 12, false ); IMFList[15].isSolvable := # Q-classes of dimension 15 ListWithIdenticalEntries( 6, false ); IMFList[16].isSolvable := [ # Q-classes of dimension 16 false, false, true, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, true, true, false, false]; IMFList[17].isSolvable := [ # Z-classes of dimension 17 false, false, false, false, false, false, false, false, false, true, true, true, true, false, false, false, false, false, false, false, false, false, false, false]; IMFList[18].isSolvable := # Q-classes of dimension 18 ListWithIdenticalEntries( 17, false ); IMFList[19].isSolvable := # Z-classes of dimension 19 ListWithIdenticalEntries( 9, false ); IMFList[20].isSolvable := # Q-classes of dimension 20 ListWithIdenticalEntries( 31, false ); IMFList[21].isSolvable := # Q-classes of dimension 21 ListWithIdenticalEntries( 8, false ); IMFList[22].isSolvable := # Q-classes of dimension 22 ListWithIdenticalEntries( 12, false ); IMFList[23].isSolvable := # Z-classes of dimension 23 ListWithIdenticalEntries( 28, false ); IMFList[24].isSolvable := [ # Q-classes of dimension 24 false, false, false, false, false, false, false, false, false, false, false, false, true, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false]; IMFList[25].isSolvable := # Q-classes of dimension 25 ListWithIdenticalEntries( 5, false ); IMFList[26].isSolvable := # Q-classes of dimension 26 ListWithIdenticalEntries( 16, false ); IMFList[27].isSolvable := # Q-classes of dimension 27 ListWithIdenticalEntries( 5, false ); IMFList[28].isSolvable := # Q-classes of dimension 28 ListWithIdenticalEntries( 37, false ); IMFList[29].isSolvable := # Q-classes of dimension 29 ListWithIdenticalEntries( 2, false ); IMFList[30].isSolvable := # Q-classes of dimension 30 ListWithIdenticalEntries( 33, false ); IMFList[31].isSolvable := # Q-classes of dimension 31 ListWithIdenticalEntries( 4, false ); ############################################################################# ## ## Descriptions of the isomorphism types of the class representatives of the ## irreducible maximal finite integral matrix groups. ## IMFList[1].isomorphismType := [ # Z-classes of dimension 1 "C2"]; IMFList[2].isomorphismType := [ # Z-classes of dimension 2 "C2 wr C2 = D8", "C2 x S3 = C2 x W(A2) = D12"]; IMFList[3].isomorphismType := [ # Z-classes of dimension 3 "C2 wr S3 = C2 x S4 = W(B3)", "C2 wr S3 = C2 x S4 = C2 x W(A3)", "C2 wr S3 = C2 x S4 = C2 x W(A3)"]; IMFList[4].isomorphismType := [ # Z-classes of dimension 4 "C2 wr S4 = W(B4)", "W(F4)", "D12 wr C2 = (C2 x W(A2)) wr C2", "(D12 Y D12):C2", "C2 x S5 = C2 x W(A4)", "C2 x S5 = C2 x W(A4)"]; IMFList[5].isomorphismType := [ # Z-classes of dimension 5 "C2 wr S5 = W(B5)", "C2 wr S5 = C2 x W(D5)", "C2 wr S5 = C2 x W(D5)", "C2 x S6", "C2 x S6", "C2 x S6", "C2 x S6"]; IMFList[6].isomorphismType := [ # Z-classes of dimension 6 "C2 wr S6 = W(B6)", "C2 wr S6 = C2 x W(D6)", "C2 wr S6 = C2 x W(D6)", "(C2 x S4) wr C2 = (C2 x W(A3)) wr C2", "(C2 x S4) wr C2 = (C2 x W(A3)) wr C2", "subgroup of index 2 of C2 wr S6", "(C2 x S3) wr S3 = (C2 x W(A2)) wr S3 = D12 wr S3", "C2 x W(E6)", "C2 x W(E6)", "C2 x S3 x S4 = D12 x S4 = C2 x W(A2) x W(A3)", "C2 x S3 x S4 = D12 x S4 = C2 x W(A2) x W(A3)", "C2 x S7 = C2 x W(A6)", "C2 x S7 = C2 x W(A6)", "C2 x PGL(2,7)", "C2 x S5", "C2 x S5", "C2 x S5"]; IMFList[7].isomorphismType := [ # Z-classes of dimension 7 "C2 wr S7 = W(B7)", "C2 wr S7 = C2 x W(D7)", "C2 wr S7 = C2 x W(D7)", "C2 x S8 = C2 x W(A7)", "C2 x S8 = C2 x W(A7)", "W(E7)", "W(E7)"]; IMFList[8].isomorphismType := [ # Z-classes of dimension 8 "C2 wr S8 = W(B8)", "C2 wr S8 = C2 x W(D8)", "C2 wr S8 = C2 x W(D8)", "W(F4) wr C2", "W(E8)", "S3 x W(F4) = W(A2) x W(F4)", "D12 wr S4 = (W(A2) x C2) wr S4", "C2 x (S3 wr S4)", "C2 x (S3 wr S4)", "(C2 x (S3 wr C2)) wr C2", "C2 x S9 = C2 x W(A8)", "C2 x S9 = C2 x W(A8)", "C2 x (S3 wr S3)", "(C2 x S5) wr C2", "(C2 x S5) wr C2", "(SL(2,5) Y SL(2,5)):(C2 x C2)", "C2 x (S5 wr C2)", "C2 x S5 x S3", "C2 x S5 x S3", "W(F4)", "W(F4)", "S3 subd W(F4) = (C3 x (SL(2,3) Y SL(2,3)):C2).C2", "C2 x PGL(2,7)", "C2 x PGL(2,7)", "C2 x PGL(2,7)", "C2 x PGL(2,7)"]; IMFList[9].isomorphismType := [ # Z-classes of dimension 9 "C2 wr S9", "C2 wr S9", "C2 wr S9", "(C2 wr S3) wr S3", "(C2 wr S3) wr S3", "(C2 wr S3) wr S3", "(C2 wr S3) wr S3", "C2^9:(S3 wr C2)", "C2^9:(S3 wr C2)", "C2 x (S4 wr C2)", "C2 x (S4 wr C2)", "C2 x (S4 wr S3)", "C2 x (S4 wr S3)", "C2 x S4 x S4", "C2 x S10", "C2 x S10", "C2 x S10", "C2 x S10", "C2 x S6", "C2 x S6"]; IMFList[10].isomorphismType := [ # Z-classes of dimension 10 "C2 wr S10", "C2 wr S10", "C2 wr S10", "C2^9:S10", "C2^10:S6", "C2^10:(S5 wr C2)", "C2^10:(S5 wr C2)", "C2^10:S5", "C2^10:S5", "C2^6:S5", "C2^6:S5", "C2^5:S6", "C2^5:S6", "(C2 x S6) wr C2", "(C2 x S6) wr C2", "(C2 x S6) wr C2", "(C2 x S6) wr C2", "(C2 x S6) wr C2", "(C2 x S6) wr C2", "C2 x (S6 wr C2)", "C2 x (S6 wr C2)", "C2 x (S6 wr C2)", "(C2^2 x A5):C2", "(C2^2 x A5):C2", "(C2 x S3) wr S5", "C2 x (S3 wr S5)", "C2 x (S3 wr S5)", "C2 x (C3^4:C2):S5", "S3 x (C2 wr S5)", "S3 x (C2 wr S5)", "C2 x SU(4,2):C2", "(C6 x SU(4,2)):C2", "(C6 x SU(4,2)):C2", "D12 x S6", "D12 x S6", "D12 x S6", "D12 x S6", "C2 x S6", "C2 x S6", "C2 x S6", "C2 x S6", "C2 x S11", "C2 x S11", "C2 x PGL(2,11)", "C2 x PGL(2,11)", "C2 x PGL(2,11)"]; IMFList[11].isomorphismType := [ # Z-classes of dimension 11 "C2 wr S11 = W(B11)", "C2 wr S11 = C2 x W(D11)", "C2 wr S11 = C2 x W(D11)", "C2 x S12 = C2 x W(A11)", "C2 x S12 = C2 x W(A11)", "C2 x S12 = C2 x W(A11)", "C2 x S12 = C2 x W(A11)", "C2 x S12 = C2 x W(A11)", "C2 x S12 = C2 x W(A11)"]; IMFList[12].isomorphismType := [ # Q-classes of dimension 12 "C2 wr S12 = W(B12)", "W(F4) wr S3", "(C2 x W(E6)) wr C2", "D12 wr S6 = (C2 x S3) wr S6 = (C2 x W(A2)) wr S6", "C6.PSU(4,3).(C2 x C2)", "((3+^(1+2):SL(2,3)) x SL(2,3)).C2", "(C2 x S5) wr C2", "(C2 x S5) wr S3 = (C2 x W(A4)) wr S3", "(C2 x D10 x A5):C2", "(SL(2,5) Y SL(2,3)).C2", "C2 x S3 x S5", "(C2 x C3.A6).(C2 x C2)", "(C2 x S7) wr C2 = (C2 x W(A6)) wr C2", "(C2 x PGL(2,7)) wr C2", "(PSL(2,7) x D8):C2", "(PSL(2,7) x D8):C2", "C2 x S3 x S7 = C2 x W(A2) x W(A6)", "C2 x S3 x PGL(2,7)", "C2 x S13 = C2 x W(A12)"]; IMFList[13].isomorphismType := [ # Z-classes of dimension 13 "C2 wr S13 = W(B13)", "C2 wr S13 = C2 x W(D13)", "C2 wr S13 = C2 x W(D13)", "C2 x S14 = C2 x W(A13)", "C2 x S14 = C2 x W(A13)", "C2 x S14 = C2 x W(A13)", "C2 x S14 = C2 x W(A13)", "C2 x SL(3,3):C2", "C2 x SL(3,3):C2", "C2 x SL(3,3):C2", "C2 x SL(3,3):C2", "C2 x SL(3,3):C2", "C2 x SL(3,3):C2", "C2 x PSL(2,25):C2", "C2 x PSL(2,25):C2", "C2 x PSL(2,25):C2", "C2 x PSL(2,25):C2"]; IMFList[14].isomorphismType := [ # Q-classes of dimension 14 "C2 wr S14 = W(B14)", "W(E7) wr C2", "(C2 x S3) wr S7 = D12 wr S7 = (C2 x W(A2)) wr S7", "C2 x G2(3)", "(SU(3,3) x C4).C2", "S3 x W(E7) = W(A2) x W(E7)", "C2 x S15 = C2 x W(A14)", "C2 x S7", "C2 x S8", "C2 x PGL(2,13)", "C2 x PSL(2,13)", "C2 x PGL(2,13)"]; IMFList[15].isomorphismType := [ # Q-classes of dimension 15 "C2 wr S15 = W(B15)", "C2 x S16 = C2 x W(A15)", "C2 x W(E6)", "C2 x Sp(6,2)", "(C2 x S6) wr S3 = (C2 x W(A5)) wr S3", "C2 x S7"]; IMFList[16].isomorphismType := [ # Q-classes of dimension 16 "C2 wr S16 = W(B16)", "W(E8) wr C2", "W(F4) wr S4", "2+^(1+8).O+(8,2)", "(C2 x S3) wr S8 = (C2 x W(A2)) wr S8", "(SL(2,9) Y SL(2,9)).(C2 x C2)", "W(E8) x W(A2)", "(S3 x W(F4)) wr C2 = (W(A2) x W(F4)) wr C2", "((Sp(4,3) x C3) Y SL(2,3)).C2", "(C2 x S5) wr S4 = (C2 x W(A4)) wr S4", "(((SL(2,5) Y SL(2,5)):C2) x D10):C2", "C2 x (S5 x S5):C2", "((SL(2,5) Y SL(2,5)):(C2 x C2)) wr C2", "C2.A10", "S5 x W(F4)", "(SL(2,5) Y (D8 Y Q8).A5).C2", "(C2 x S3 x S5) wr C2", "S3 x (SL(2,5) Y SL(2,5)):(C2 x C2)", "(SL(2,5) Y SL(2,9)):C2", "(C2 x A6).(C2 x C2)", "(SL(2,5) Y ((SL(2,3) x C3).C2)).C2", "D120.(C4 x C2)", "(SL(2,7) Y C2.S3).C2", "C2 x S3 x PGL(2,7)", "(C2.A7 Y C2.S3).C2", "(SL(2,7) Y C2.S3).C2", "(C2 x PGL(2,7)) wr C2", "D120.C2", "D120.C2", "C2 x S17 = C2 x W(A16)", "C2 x PGL(2,17)"]; IMFList[17].isomorphismType := [ # Z-classes of dimension 17 "C2 wr S17", "C2 wr S17", "C2 wr S17", "C2 x S18", "C2 x S18", "C2 x S18", "C2 x S18", "C2 x S18", "C2 x S18", "C2^17:(C17:C8)", "C2^17:(C17:C8)", "C2^9:(C17:C8)", "C2^9:(C17:C8)", "C2 x PSL(2,17)", "C2 x PSL(2,17)", "C2 x PSL(2,17)", "C2 x SL(2,16):C4", "C2 x SL(2,16):C4", "C2 x SL(2,16):C4", "C2 x SL(2,16):C4", "C2 x SL(2,16):C4", "C2 x SL(2,16):C4", "C2 x SL(2,16):C4", "C2 x SL(2,16):C4"]; IMFList[18].isomorphismType := [ # Q-classes of dimension 18 "C2 wr S18 = W(B18)", "(C2 x Sp(4,4)).C2", "(C2 x W(E6)) wr S3", "(C2 x 3+^(1+4):Sp(4,3)).C2", "(C2 x S3) wr S9 = (C2 x W(A2)) wr S9", "(C2 x S5) wr S3", "(C2 x S10) wr C2 = (C2 x W(A9)) wr C2", "(C2 x A5 x A5).(C2 x C2)", "(C2 x C3.A6).(C2 x C2)", "C2 x S3 x S10 = C2 x W(A2) x W(A9)", "(C2 x S7) wr S3 = (C2 x W(A6)) wr S3", "(C2 x PGL(2,7)) wr S3", "(C2 x PSL(2,7) x PSL(2,7)).(C2 x C2)", "C2 x PGL(2,17)", "C2 x PSL(2,17)", "C2 x S19 = C2 x W(A18)", "C2 x PGL(2,19)"]; IMFList[19].isomorphismType := [ # Z-classes of dimension 19 "C2 wr S19", "C2 wr S19", "C2 wr S19", "C2 x S20", "C2 x S20", "C2 x S20", "C2 x S20", "C2 x S20", "C2 x S20"]; IMFList[20].isomorphismType := [ # Q-classes of dimension 20 "C2 wr S20", "W(F4) wr S5", "(SU(5,2) x SL(2,3)).C2", "C2.M12.C2", "(D8 x S6).C2", "(C2 x S3) wr S10 = (C2 x W(A2)) wr S10", "((SU(4,2) x C6):C2) wr C2", "(C2 x S6) wr S4 = (C2 x W(A5)) wr S4", "W(F4) x S6 = W(F4) x W(A5)", "(C2 x SU(4,2)).C2", "(C2 x S6) wr C2", "(SU(4,2) x C6).C2", "(C2 x S5) wr S5 = (C2 x W(A4)) wr S5", "C2 x 5+^(1+2):GL(2,5)", "C2 x S5 x S6 = C2 x W(A4) x W(A5)", "(C2.PSL(3,4)).(C2 x C2)", "C2.M22.C2", "C2 x S7", "C2 x S21 = C2 x W(A20)", "(C2 x PSL(3,4)).(C2 x S3)", "C2 x S8", "(C2 x S11) wr C2 = (C2 x W(A10)) wr C2", "(PSL(2,11) x D12).C2", "(C2 x PGL(2,11)) wr C2", "(C2 x PGL(2,11)) wr C2", "(PSL(2,11) x D12).C2", "(SL(2,11) Y SL(2,3)).C2", "C2 x S3 x S11 = C2 x W(A2) x W(A10)", "C2 x S3 x PGL(2,11)", "C2 x S3 x PGL(2,11)", "C2 x PGL(2,19)"]; IMFList[21].isomorphismType := [ # Q-classes of dimension 21 "C2 wr S21", "W(E7) wr S3", "W(E7)", "(C2 x PSU(4,3)).D8", "C2 x Sp(6,2)", "(C2 x PSU(3,5)).S3", "C2 x S7", "C2 x S22 = C2 x W(A21)"]; IMFList[22].isomorphismType := [ # Q-classes of dimension 22 "C2 wr S22 = W(B22)", "(C2 x PSU(6,2)).S3", "(C2 x S3) wr S11 = (C2 x W(A2)) wr S11", "(C2 x S12) wr C2 = (C2 x W(A11)) wr C2", "C2 x S3 x S12 = C2 x W(A2) x W(A11)", "(C2 x HS).C2", "(C2 x Mc).C2", "C2 x S23 = C2 x W(A22)", "C2 x PSL(2,23)", "C2 x PSL(2,23)", "C2 x PGL(2,23)", "C2 x PGL(2,23)"]; IMFList[23].isomorphismType := [ # Z-classes of dimension 23 "C2 x S24", "C2 x S24", "C2 x S24", "C2 x S24", "C2 x S24", "C2 x S24", "C2 x S24", "C2 x S24", "C2 wr S23", "C2 wr S23", "C2 wr S23", "C2 wr M23", "C2 wr M23", "C2^12:M23", "C2^12:M23", "C2 x M24", "C2 x M24", "C2 x M24", "C2 x M24", "C2 x M24", "C2 x M24", "C2 x Co2", "C2 x Co2", "C2 x Co2", "C2 x Co3", "C2 x Co3", "C2 x Co3", "C2 x Co3"]; IMFList[24].isomorphismType := [ # Q-classes of dimension 24 "C2 wr S24 = W(B24)", "W(E8) wr S3", "C2.Co1", "(((SL(2,5) Y SL(2,5)):C2) x A5).C2", "W(F4) wr S6", "(C6 x PSU(4,3).C2 Y SL(2,3)).C2", "(C2 x W(E6)) wr S4", "((C2 x C3.A6).C2 Y SL(2,3)).C2", "(Sp(4,3) x 3+^(1+2):SL(2,3)).C2", "(C2 x S3) wr S12 = (C2 x W(A2)) wr S12", "(C6.PSU(4,3).(C2 x C2)) wr C2", "W(F4) x W(E6)", "((3+^(1+2):SL(2,3) x SL(2,3)).C2) wr C2", "(C3.S6 x D8).C2", "(S3 x W(F4)) wr S3", "(C6.PSL(3,4).C2 Y D8).C2", "((SL(2,3) Y C4).C2 x PSU(3,3)).C2", "C2 x S25 = C2 x W(A24)", "(C2 x S5) wr S6 = (C2 x W(A4)) wr S6", "(C2 x S5) wr S4", "((SL(2,5) Y SL(2,5)):(C2 x C2)) wr S3", "(C2.J2 Y SL(2,5)):C2", "((C2 x D10 x A5).C2) wr C2", "((SL(2,5) Y SL(2,3)).C2) wr C2", "(SL(2,5) Y (D8 Y Q8).A5).C2", "(((SL(2,5) Y SL(2,5)):C2) x A5):C2", "W(F4) x S5", "(SL(2,5) Y (C2 x 3+^(1+2)).GL(2,3)).C2", "(C2 x S3 x S5) wr C2", "((C2 x C3.A6).(C2 x C2)) wr C2", "S3 x (SL(2,5) Y SL(2,3)).C2", "(C2 x S7) wr S4 = (C2 x W(A6)) wr S4", "(PSL(2,7) x W(F4)).C2", "(C2 x PGL(2,7)) wr S4", "(PSL(2,7) x W(F4)).C2", "((PSL(2,7) x D8).C2) wr C2", "W(F4) x S7 = W(F4) x W(A6)", "((PSL(2,7) x D8).C2) wr C2", "W(F4) x PGL(2,7)", "(SL(2,13) Y SL(2,3)).C2", "(SL(2,7) x PSL(2,7)).C2", "C6.A7:C2", "(C3.M10 x SL(2,3)).C2", "(A5 x ((C3 x D8).C2)).C2", "(C3.M10 x D8).C2", "(C2 x S3 x S7) wr C2 = (C2 x W(A2) x W(A6)) wr C2", "(C2 x S3 x PGL(2,7)) wr C2", "S3 x ((PSL(2,7) x D8).C2)", "S3 x ((PSL(2,7) x D8).C2)", "(C2 x S13) wr C2 = (C2 x W(A12)) wr C2", "((C2 x PSL(3,3)).C2 x C3).C2", "C2 x S3 x S13 = C2 x W(A2) x W(A12)", "(C2 x D78).C12", "C2 x S5 x W(E6) = C2 x W(A4) x W(E6)", "(C2 x S3 x S5) wr S3 = ((C2 x W(A2)) x W(A4)) wr S3", "(C2 x C3.PGL(2,9) x D10).C2", "S3 x (C2 x D10 x A5).C2", "(C2 x PSU(4,2)).C2", "SL(2,7) Y (C2.S4)", "(SL(2,7) Y Q16).C2", "(C2 x PGL(2,7)) wr S3", "C2 x S5 x S7 = C2 x W(A4) x W(A6)", "C2 x S5 x PGL(2,7)", "(SL(2,11) Y SL(2,3)).C2", "C2 x PSL(2,11):C2"]; IMFList[25].isomorphismType := [ # Q-classes of dimension 25 "C2 wr S25 = W(B25)", "(C2 x W(A5)) wr S5 = (C2 x S6) wr S5", "C2 x (S6 x S6):C2", "C2 x PGL(2,49)", "C2 x S26 = C2 x W(A25)"]; IMFList[26].isomorphismType := [ # Q-classes of dimension 26 "C2 wr S26 = W(B26)", "(C2 x S3) wr S13 = (C2 x W(A2)) wr S13", "(C2 x PGL(3,3):C2) wr C2", "(C2 x PSL(2,25):C2) wr C2", "(C2 x S14) wr C2 = (C2 x W(A13)) wr C2", "(C2 x PSp(4,5)).C2", "C2 x 3D4(2):C3", "C2 x PGL(4,3)", "(C2 x PSp(6,3) x C3).C2", "C2 x PSp(4,5):C2", "C2 x PGL(2,25):C2", "C2 x PSL(2,25):C2", "C2 x PSL(2,25):C2", "C2 x S3 x PSL(2,25):C2", "C2 x S3 x S14 = C2 x W(A2) x W(A13)", "C2 x S27 = C2 x W(A26)"]; IMFList[27].isomorphismType := [ # Q-classes of dimension 27 "C2 wr S27 = W(B27)", "(C2 x S10) wr S3 = (C2 x W(A9)) wr S3", "C2 x S9", "C2 x PGL(3,3):C2", "C2 x S28 = C2 x W(A27)"]; IMFList[28].isomorphismType := [ # Q-classes of dimension 28 "C2 wr S28 = W(B28)", "(C2 x S3) wr S14 = (C2 x W(A2)) wr S14", "W(F4) wr S7", "(C2 x S5) wr S7 = (C2 x W(A4)) wr S7", "W(E7) wr S4", "(W(A2) x W(E7)) wr C2", "(C2 x G2(3)) wr C2", "(C2 x S7) wr C2", "(C2 x S8) wr C2", "((SU(3,3) x C4).C2) wr C2", "(C2 x PGL(2,13)) wr C2", "(C2 x PSL(2,13)) wr C2", "(C2 x PGL(2,13)) wr C2", "(C2 x S15) wr C2 = (C2 x W(A14)) wr C2", "(Sp(6,3) x C3).C2", "(C2.J2 Y SL(2,3)).C2", "(C2 x PO+(8,2)):S3", "Sz(8):C3 x C4", "W(F4) Y W(E7)", "(C2 x J2).C2", "(C2 x S3 x G2(3)).C2", "(PSU(3,3) x (Q8 Y C4).S3).C2", "S3 x (PSU(3,3) x C4).C2", "C2 x PSU(3,5):C2", "W(A4) x W(E7)", "C2 x S8", "C2 x J2:C2", "C2 x W(A2) x S7", "C2 x W(A2) x W(A14)", "C2 x W(A2) x S8", "(SL(2,13) Y SL(2,3)).C2", "(C2 x W(A2) x PSL(2,13)).C2", "C2 x W(A2) x PGL(2,13)", "C2 x W(A2) x PGL(2,13)", "(C2 x PSL(2,13) x S3).C2", "C2 x PGL(2,29)", "C2 x S29 = C2 x W(A28)"]; IMFList[29].isomorphismType := [ # Q-classes of dimension 29 "C2 wr S29 = W(B29)", "C2 x S30 = C2 x W(A29)"]; IMFList[30].isomorphismType := [ # Q-classes of dimension 30 "C2 wr S30 = W(B30)", "(C2 x W(A2)) wr S15", "(C2 x W(A5)) wr S6", "(C2 x W(E6)) wr S5", "(C2 x W(A6)) wr S5", "(C2 x PGL(2,7)) wr S5", "(C2 x S5) wr S5", "((C6 x PSU(4,2)).C2) wr S3", "(C2 x S6) wr S3", "(C2 x W(A10)) wr S3", "(C2 x PGL(2,11)) wr S3", "(C2 x PGL(2,11)) wr S3", "(C2 x Sp(6,2)) wr C2", "(C2 x W(E6)) wr C2", "(C2 x W(A6)) wr C2", "(C2 x W(A15)) wr C2", "(C2 x PSU(4,2)):C2", "(C2 x C3.PSU(4,3)).(C2 x C2)", "C2 x W(A2) x W(A15)", "(C2 x PSU(4,2) x 3+^(1+2):SL(2,3)).C2", "(C2 x C3.S6).C2", "C2 x W(A5) x W(E6)", "(C2 x C3.PSL(3,4)).(C2 x C2)", "C2 x W(A2) x Sp(6,2)", "C2 x W(A5) x S5", "C2 x W(A2) x W(A6)", "C2 x C3.S7", "C2 x W(A5) x W(A6)", "C2 x W(A5) x PGL(2,7)", "C2 x PGL(2,29)", "C2 x PSL(2,31)", "C2 x PGL(2,31)", "C2 x S31 = C2 x W(A30)"]; IMFList[31].isomorphismType := [ # Q-classes of dimension 31 "C2 wr S31 = W(B31)", "C2 x PSL(2,32):C5", "C2 x PSL(3,5):C2", "C2 x S32 = C2 x W(A31)"]; ############################################################################# ## ## Norms of the short vectors for the class representatives of the ## irreducible maximal finite integral matrix groups. ## IMFList[1].minimalNorm := [ # Z-classes of dimension 1 1]; IMFList[2].minimalNorm := [ # Z-classes of dimension 2 1,2]; IMFList[3].minimalNorm := [ # Z-classes of dimension 3 1,3,2]; IMFList[4].minimalNorm := [ # Z-classes of dimension 4 1,2,2,4,2,4]; IMFList[5].minimalNorm := [ # Z-classes of dimension 5 1,2,4,5,2,4,3]; IMFList[6].minimalNorm := [ # Z-classes of dimension 6 1,2,2,2,3,3,2,2,4,4,6,6,2,4,3,4,5]; IMFList[7].minimalNorm := [ # Z-classes of dimension 7 1,2,4,7,2,2,3]; IMFList[8].minimalNorm := [ # Z-classes of dimension 8 1,2,2,2,2,4,2,4,6,4,2,8,8,2,4,4,8,8,4,4,3,6,8,6,4,14]; IMFList[9].minimalNorm := [ # Z-classes of dimension 9 1,2,4,2,3,2,4,3,4,4,9,6,8,6,9,2,8,4,12,4]; IMFList[10].minimalNorm := [ # Z-classes of dimension 10 1,2,2,4,4,2,4,3,4,4,5,4,5,2,4,2,5,3,4,5,6,9,4,8,2,4,6,10,4,8,3,4,6,4,10,6,8, 3,4,4,4,2,10,4,10,6]; IMFList[11].minimalNorm := [ # Z-classes of dimension 11 1,2,4,11,5,8,6,2,2]; IMFList[12].minimalNorm := [ # Q-classes of dimension 12 1,2,2,2,4,4,3,2,4,4,6,8,2,4,4,8,4,8,2]; IMFList[13].minimalNorm := [ # Z-classes of dimension 13 1,2,4,13,2,12,4,3,3,4,4,12,12,5,4,12,6]; IMFList[14].minimalNorm := [ # Q-classes of dimension 14 1,2,2,4,3,4,2,4,4,7,6,6]; IMFList[15].minimalNorm := [ # Q-classes of dimension 15 1,2,3,3,2,3]; IMFList[16].minimalNorm := [ # Q-classes of dimension 16 1,2,2,4,2,4,4,4,6,2,8,4,4,6,4,8,4,8,10,8,12,8,6,8,12,10,4,4,6,2,6]; IMFList[17].minimalNorm := [ # Z-classes of dimension 17 1,2,4,17,2,16,4,2,4,4,4,16,6,34,4,6,8,3,4,4,7,10,17,8]; IMFList[18].minimalNorm := [ # Q-classes of dimension 18 1,3,2,4,2,3,2,5,6,4,2,4,6,9,6,2,10]; IMFList[19].minimalNorm := [ # Z-classes of dimension 19 1,4,2,19,2,2,10,8,9]; IMFList[20].minimalNorm := [ # Q-classes of dimension 20 1,2,4,4,3,2,4,2,4,4,3,6,2,4,4,5,8,4,2,4,4,2,4,4,6,8,6,4,8,12,8]; IMFList[21].minimalNorm := [ # Q-classes of dimension 21 1,2,3,3,4,21,6,2]; IMFList[22].minimalNorm := [ # Q-classes of dimension 22 1,8,2,2,4,3,12,2,4,6,8,12]; IMFList[23].minimalNorm := [ # Z-classes of dimension 23 23,2,2,6,4,6,16,11,1,2,4,4,2,16,4,23,4,8,3,8,12,3,4,12,5,4,10,15]; IMFList[24].minimalNorm := [ # Q-classes of dimension 24 1,2,4,4,2,4,2,4,4,2,4,4,4,4,4,8,8,2,2,3,4,8,4,4,6,8,6,8,6,8,8,2,4,4,8,4,4,8, 8,12,4,4,8,10,16,4,8,8,16,2,4,4,6,4,4,8,8,6,4,4,4,4,8,12,6]; IMFList[25].minimalNorm := [ # Q-classes of dimension 25 1,2,4,6,2]; IMFList[26].minimalNorm := [ # Q-classes of dimension 26 1,2,3,5,2,3,8,4,6,5,6,4,6,8,4,2]; IMFList[27].minimalNorm := [ # Q-classes of dimension 27 1,2,4,6,2]; IMFList[28].minimalNorm := [ # Q-classes of dimension 28 1,2,2,2,2,4,4,4,4,3,7,6,6,2,6,6,6,6,4,8,6,8,6,4,4,4,16,8,4,24,6,8,12,14,26, 28,2]; IMFList[29].minimalNorm := [ # Q-classes of dimension 29 1,2]; IMFList[30].minimalNorm := [ # Q-classes of dimension 30 1,2,5,2,6,4,3,4,3,2,4,6,3,3,3,2,3,6,4,4,4,4,8,6,6,6,10,4,8,15,8,16,2]; IMFList[31].minimalNorm := [ # Q-classes of dimension 31 1,4,5,2]; ############################################################################# ## ## Degrees, i.e. orbit sizes of short vectors, for the class representatives ## of the irreducible maximal finite integral matrix groups. ## IMFList[1].degrees := [ # Z-classes of dimension 1 2]; IMFList[2].degrees := [ # Z-classes of dimension 2 4, 6]; IMFList[3].degrees := [ # Z-classes of dimension 3 6, 8, 12]; IMFList[4].degrees := [ # Z-classes of dimension 4 8, 24, 12, 18, 20, 10]; IMFList[5].degrees := [ # Z-classes of dimension 5 10, 40, 10, 12, 30, 30, 20]; IMFList[6].degrees := [ # Z-classes of dimension 6 12, 60, 12, 24, 16, 32, 18, 72, 54, 36, 24, 14, 42, 42, 20, 30, 24]; IMFList[7].degrees := [ # Z-classes of dimension 7 14, 84, 14, 16, 56, 126, 56]; IMFList[8].degrees := [ # Z-classes of dimension 8 16, 112, 16, 48, 240, 72, 24, 108, 24, 36, 72, 18, 54, 40, 20, 120, 50, 30, 60, 24, 32, 96, 42, 56, 84, 48]; IMFList[9].degrees := [ # Z-classes of dimension 9 18, 144, 18, 36, 24, 36, 18, 48, [18,144], 72, 32, 96, 36, 48, 20, 90, 90, 90, 30, 90]; IMFList[10].degrees := [ # Z-classes of dimension 10 20, 180, 20, 180, [20,240], 80, 20, 80, [20,80], 40, 64, 120, 32, 60, 60, 60, 24, 40, 60, 72, 60, 40, 60, 60, 30, 180, 30, 162, 120, 30, 80, 270, 240, 90, 36, 60, 90, 40, 30, 90, 30, 110, 22, [110,110], 132, 110]; IMFList[11].degrees := [ # Z-classes of dimension 11 22, 220, 22, 24, 132, 132, 132, 132, 132]; IMFList[12].degrees := [ # Q-classes of dimension 12 24, 72, 144, 36, 756, 216, 40, 60, [120,300], 360, 60, 270, 84, 84, [168,168], [168,168], 126, 126, 156]; IMFList[13].degrees := [ # Z-classes of dimension 13 26, 312, 26, 28, 182, 182, 182, 52, 104, 468, 234, 52, 104, 52, [130,650], 130, 130]; IMFList[14].degrees := [ # Q-classes of dimension 14 28, 252, 42, 756, 112, 378, 210, 210, [420,840], 156, 182, [182,364]]; IMFList[15].degrees := [ # Q-classes of dimension 15 30, 240, 240, 240, 90, 70]; IMFList[16].degrees := [ # Q-classes of dimension 16 32, 480, 96, 4320, 48, 720, 720, 144, 960, 80, 600, [200,240], 240, 2400, 240, 1200, 120, 360, 1440, 180, 480, [120,240], 336, [168,252], 1680, 336, 168, [120,120,120,120], [120,120,120], 272, [272,816]]; IMFList[17].degrees := [ # Z-classes of dimension 17 34, 544, 34, 36, 306, 306, 306, 306, 306, 34, 34, 34, 2176, 36, 204, [816,1224], 102, 136, [510,816], 2040, 816, 1020, 240, 102]; IMFList[18].degrees := [ # Q-classes of dimension 18 36, 240, 216, 6480, 54, 60, 180, 72, 180, 270, 126, 126, 336, 272, 204, 342, 342]; IMFList[19].degrees := [ # Z-classes of dimension 19 38, 38, 684, 40, 380, 380, 380, 380, 380]; IMFList[20].degrees := [ # Q-classes of dimension 20 40, 120, 3960, 3960, 80, 60, 540, 120, 360, 540, 80, 1440, 100, [300,6000,6000], 300, 112, [1540,4620], 70, 420, [840,6720,7560], 420, 220, [660,660,660,1980,1980,2640,3960], [220,220], 220, 660, 1320, 330, [330,330], 330, [570,1710]]; IMFList[21].degrees := [ # Q-classes of dimension 21 42, 378, 672, 1680, 630, 300, [210,210], 462]; IMFList[22].degrees := [ # Q-classes of dimension 22 44, 1782, 66, 264, 396, 2200, 550, 506, [506,506,506], [506,506,1012,2024], [506,1518,2024], 506]; IMFList[23].degrees := [ # Z-classes of dimension 23 48, 552, 552, 552, 552, 552, 552, 552, 46, 1012, 46, 46, 46, 46, [1012,64768], 48, [552,53130], 1518, 2576, 1518, 2576, 4600, 93150, 4600, 552, 75900, 22356, 552]; IMFList[24].degrees := [ # Q-classes of dimension 24 48, 720, 196560, [3600,8640], 144, 3024, 288, [2160,6480,12960], 2160, 72, 1512, 864, 432, 144, 216, [3024,7560], [4536,6048], 600, 120, 80, 360, 37800, [240,600], 720, 2400, 1800, 240, 1080, 120, 540, 1080, 168, [1008,3024], 168, [1008,3024], [336,336], 504, [336,336], 504, [2184,2184,8736], [2352,8064,14112], 3024, 1080, 144, [1080,1080], 252, 252, [504,504], [504,504], 312, [936,5616,8424], 468, [624,936], 720, 180, [1080,2160,2700], [360,900], [240,1440], [1008,1008,2016], 336, 252, 420, 420, 1320, [220,220,660]]; IMFList[25].degrees := [ # Q-classes of dimension 25 50, 150, 450, [350,2450], 650]; IMFList[26].degrees := [ # Q-classes of dimension 26 52, 78, 104, 104, 364, 3120, 1638, 4212, 21840, 312, [2600,3900], 130, 130, [390,1950], 546, 702]; IMFList[27].degrees := [ # Q-classes of dimension 27 54, 270, 756, 468, 756]; IMFList[28].degrees := [ # Q-classes of dimension 28 56, 84, 168, 140, 504, 756, 1512, 420, [840,1680], 224, 312, 364, [364,728], 420, 6720, 6720, 6720, 6720, 1512, 1260, 17472, 1512, 336, 350, 1260, 1260, 630, 630, 630, 210, 2184, 1092, [546,1092], 468, 168, 870, 812]; IMFList[29].degrees := [ # Q-classes of dimension 29 58, 870]; IMFList[30].degrees := [ # Q-classes of dimension 30 60, 90, 72, 360, 70, 210, 100, 810, 120, 330, [330,330], 330, 480, 480, 140, 480, 240, [3240,10080], 720, 3240, 180, 1080, 3780, 720, 300, 210, 630, 630, 630, 812, [930,1860,3720,3720,7440], 930, 930]; IMFList[31].degrees := [ # Q-classes of dimension 31 62, 2046, 372, 992]; ############################################################################# ## ## Orbit representatives of short vectors for the class representatives of ## the irreducible maximal finite integral matrix groups. ## i := IdentityMat( 1 ); IMFList[1].orbitReps := [ # Z-classes of dimension 1 i[1]]; i := IdentityMat( 2 ); IMFList[2].orbitReps := [ # Z-classes of dimension 2 i[1], i[1]]; i := IdentityMat( 3 ); IMFList[3].orbitReps := [ # Z-classes of dimension 3 i[1], i[1], i[1]]; i := IdentityMat( 4 ); IMFList[4].orbitReps := [ # Z-classes of dimension 4 i[1], i[1], i[1], i[1], i[1], i[1]]; i := IdentityMat( 5 ); IMFList[5].orbitReps := [ # Z-classes of dimension 5 i[1], i[1], i[1], i[1], i[1], i[1], i[1]]; i := IdentityMat( 6 ); IMFList[6].orbitReps := [ # Z-classes of dimension 6 i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1]]; i := IdentityMat( 7 ); IMFList[7].orbitReps := [ # Z-classes of dimension 7 i[1], i[1], i[1], i[1], i[1], i[1], i[1]]; i := IdentityMat( 8 ); IMFList[8].orbitReps := [ # Z-classes of dimension 8 i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1]]; i := IdentityMat( 9 ); IMFList[9].orbitReps := [ # Z-classes of dimension 9 i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[7]-i[8]+i[9],i[1]], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1]]; i := IdentityMat( 10 ); IMFList[10].orbitReps := [ # Z-classes of dimension 10 i[1], i[1], i[1], i[1], [i[1],i[2]], i[1], i[1], i[1], [i[1],i[2]], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[1],i[2]], i[1], i[1]]; i := IdentityMat( 11 ); IMFList[11].orbitReps := [ # Z-classes of dimension 11 i[1], i[1], i[1]+i[2], i[1], i[1], i[1]-i[2], i[1]-i[2], i[1]-i[2], i[1]]; i := IdentityMat( 12 ); IMFList[12].orbitReps := [ # Q-classes of dimension 12 i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[4],i[1]], i[1], i[1], i[1], i[1], i[1], [i[1],i[7]], [i[1],i[6]], i[1], i[1], i[1]]; i := IdentityMat( 13 ); IMFList[13].orbitReps := [ # Z-classes of dimension 13 i[1], i[1], i[1]+i[2], i[1], i[1], i[1], i[1]-i[2], i[1]-i[3]+i[6], i[1], i[1], i[1], i[1]+i[2]+i[3]-i[6], i[1]+i[3], i[1], [i[1]+i[2],i[1]], i[1]+i[2], i[1]]; i := IdentityMat( 14 ); IMFList[14].orbitReps := [ # Q-classes of dimension 14 i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[1],i[6]], i[1], i[1], [i[2],i[1]]]; i := IdentityMat( 15 ); IMFList[15].orbitReps := [ # Q-classes of dimension 15 i[1], i[1], i[1], i[1], i[1], i[1]]; i := IdentityMat( 16 ); IMFList[16].orbitReps := [ # Q-classes of dimension 16 i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[1],i[7]], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[4],i[1]], i[1], [i[9],i[1]], i[1], i[1], i[1], [i[1],i[2],i[4],i[5]], [i[1],i[3],i[7]], i[1], [i[3],i[1]]]; i := IdentityMat( 17 ); IMFList[17].orbitReps := [ # Z-classes of dimension 17 i[1], i[1], i[1]+i[2], i[1], i[1], i[1], i[1]-i[2], i[1]-i[2], i[1]-i[2], i[1]-i[2]-i[3]+i[4]+i[7]+i[15], i[1]-i[2]-i[5]+i[6]-i[12], i[1]+i[3]-i[4]+i[5]+i[7]-i[8]+i[9]+i[11], i[1]-i[3], i[1]-i[3]+i[6]-i[9]+i[11], i[1], [i[1]-i[9],i[1]], i[1]+i[6], i[1], [i[1],i[1]-i[5]], i[1], i[1], i[1], i[1], i[1]]; i := IdentityMat( 18 ); IMFList[18].orbitReps := [ # Q-classes of dimension 18 i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1]]; i := IdentityMat( 19 ); IMFList[19].orbitReps := [ # Z-classes of dimension 19 i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1]]; i := IdentityMat( 20 ); IMFList[20].orbitReps := [ # Q-classes of dimension 20 i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[6]-i[7],i[1],i[2]], i[1], i[1], [i[1],i[2]], i[1], i[1], [i[20],i[5],i[1]], i[1], i[1], [i[1],i[8],i[10],i[12],i[13],i[3],i[2]], [i[1],i[2]], i[1], i[1], i[1], i[1], [i[1],i[3]], i[1], [i[5],i[1]]]; i := IdentityMat( 21 ); IMFList[21].orbitReps := [ # Q-classes of dimension 21 i[1], i[1], i[1], i[1], i[1], i[1], [i[1],i[1]+i[15]+i[20]], i[1]]; i := IdentityMat( 22 ); IMFList[22].orbitReps := [ # Q-classes of dimension 22 i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[1],i[2],i[3]], [i[1],i[16],i[3],i[4]], [i[4],i[1],i[2]], i[1]]; i := IdentityMat( 23 ); IMFList[23].orbitReps := [ # Z-classes of dimension 23 i[1], i[1], i[1], i[1], i[1], i[1], i[2], i[1], i[1], i[1], i[1], i[1], i[1], i[12], [i[12],i[1]], i[1], [i[10],i[1]], i[14], i[11], i[6], i[12], i[1], i[2], i[2], i[7], i[1], i[6], i[18]]; i := IdentityMat( 24 ); IMFList[24].orbitReps := [ # Q-classes of dimension 24 i[1], i[1], i[1], [i[2],i[1]], i[1], i[1], i[1], [i[1],i[18],i[13]], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[1],i[2]], [i[2],i[1]], i[1], i[1], i[1], i[1], i[1], [i[4],i[1]], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[10],i[1]], i[1], [i[7],i[1]], [i[1],i[7]], i[1], [i[1],i[6]], i[1], [i[5],i[9],i[1]], [i[1],i[11],i[6]], i[1], i[1], i[1], [i[1],i[4]], i[1], i[1], [i[1],i[7]], [i[1],i[6]], i[1], [i[3],i[10],i[1]], i[1], [i[11],i[1]], i[1], i[1], [i[4]-i[23]-i[24],i[1],i[2]], [i[4],i[1]], [i[10],i[1]], [i[1],i[14],i[2]], i[1], i[1], i[1], i[1], i[1], [i[2],i[3],i[1]]]; i := IdentityMat( 25 ); IMFList[25].orbitReps := [ # Q-classes of dimension 25 i[1], i[1], i[1], [i[23],i[1]], i[1]]; i := IdentityMat( 26 ); IMFList[26].orbitReps := [ # Q-classes of dimension 26 i[1], i[1], i[1]-i[3]+i[6], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[1],i[2]], i[1], i[1], [i[22]+i[23]+i[26],i[1]], i[1], i[1]]; i := IdentityMat( 27 ); IMFList[27].orbitReps := [ # Q-classes of dimension 27 i[1], i[1], i[1], i[1], i[1]]; i := IdentityMat( 28 ); IMFList[28].orbitReps := [ # Q-classes of dimension 28 i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[1],i[28]], i[1], i[1], i[1], [i[2],i[1]], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[1],i[28]], i[1], i[1], i[1], i[1]]; i := IdentityMat( 29 ); IMFList[29].orbitReps := [ # Q-classes of dimension 29 i[1], i[1]]; i := IdentityMat( 30 ); IMFList[30].orbitReps := [ # Q-classes of dimension 30 i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[1],i[2]], i[1], i[1], i[1], i[1], i[1], i[1], [i[28],i[1]], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], i[1], [i[5],i[1],i[2],i[7],i[3]], i[1], i[1]]; i := IdentityMat( 31 ); IMFList[31].orbitReps := [ # Q-classes of dimension 31 i[1], i[1], i[1], i[1]]; for i in [ 1 .. 31 ] do MakeImmutable( IMFList[i].size ); MakeImmutable( IMFList[i].elementaryDivisors ); MakeImmutable( IMFList[i].isSolvable ); MakeImmutable( IMFList[i].isomorphismType ); MakeImmutable( IMFList[i].minimalNorm); MakeImmutable( IMFList[i].degrees ); MakeImmutable( IMFList[i].orbitReps ); od; if IsBound( IMFRec.i ) then i := IMFRec.i; Unbind( IMFRec.i ); else Unbind( i ); fi; ############################################################################# ## #E