Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #A imf11.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Z-class representative of the irreducible ## maximal finite integral matrix groups of dimension 11, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Z-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 11. ## IMFList[11].matrices := [ [ # Z-class [11][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1]], [[[0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0]], [[0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0]]]], [ # Z-class [11][02] [[2], [0,2], [1,0,2], [0,1,0,2], [0,0,1,0,2], [0,0,0,1,0,2], [0,0,0,0,1,0,2], [0,0,0,0,0,1,0,2], [0,0,0,0,0,0,1,0,2], [1,0,0,0,0,0,0,1,0,2], [0,1,0,0,0,0,0,0,1,0,2]], [[[1,0,-1,1,1,-1,-1,1,1,-1,0], [-1,0,1,0,-1,0,1,-1,-1,1,1], [1,0,-1,1,1,-1,-1,1,0,-1,0], [-1,0,1,0,-1,0,1,0,-1,0,1], [0,0,0,0,0,0,-1,0,0,0,0] , [0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,1,0,-1,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,0,0,1], [-1,0,0,0,0,0,0,-1,0,1,0]], [[-1,-1,1,0,-1,0,1,0,-1,0,1], [0,0,0,0,1,0,-1,0,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,1,0,-1,0,1,0,-1], [0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,1,0,-1,0,0], [0,1,-1,-1,1,0,-1,0,1,0,-1], [0,-1,0,0,0,0,1,0,-1,0,1], [0,0,-1,0,1,0,-1,0,0,0,0]]]], [ # Z-class [11][03] [[11], [-9,11], [7,-9,11], [-5,7,-9,11], [3,-5,7,-9,11], [-1,3,-5,7,-9,11], [-1,-1,3,-5,7,-9,11], [3,-1,-1,3,-5,7,-9,11], [-5,3,-1,-1,3,-5,7,-9,11], [7,-5,3,-1,-1,3,-5,7,-9,11], [-9,7,-5,3,-1,-1,3,-5,7,-9,11]], [[[0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0]], [[1,0,-1,-1,-1,0,0,0,1,0,0], [0,0,1,1,1,0,0,0,-1,0,1], [0,0,0,0,-1,0,0,0,1,0,-1], [0,0,0,0,0,-1,0,0,-1,0,1], [0,0,0,0,0,0,-1,0,1,0,-1], [0,0,0,0,0,0,0,-1,-1,0,1], [0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,-1,-1,0,0,0,1,0,0], [0,1,1,1,1,0,0,0,-1,0,0]]]], [ # Z-class [11][04] [[11], [-1,11], [-1,-1,11], [-1,-1,-1,11], [-1,-1,-1,-1,11], [-1,-1,-1,-1,-1,11], [-1,-1,-1,-1,-1,-1,11], [-1,-1,-1,-1,-1,-1,-1,11], [-1,-1,-1,-1,-1,-1,-1,-1,11], [-1,-1,-1,-1,-1,-1,-1,-1,-1,11], [-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,11]], [[[0,-1,0,0,0,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0], [0,0,0,-1,0,0,0,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0], [0,0,0,0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,0,0,0,-1,0,0,0], [0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,0,-1], [1,1,1,1,1,1,1,1,1,1,1]], [[1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0]]]], [ # Z-class [11][05] [[5], [2,5], [-1,2,5], [-1,-1,2,5], [-1,-1,-1,2,5], [-1,-1,-1,-1,2,5], [-1,-1,-1,-1,-1,2,5], [-1,-1,-1,-1,-1,-1,2,5], [-1,-1,-1,-1,-1,-1,-1,2,5], [-1,-1,-1,-1,-1,-1,-1,-1,2,5], [2,-1,-1,-1,-1,-1,-1,-1,-1,2,5]], [[[0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0]], [[1,0,1,0,1,0,1,0,0,1,0], [0,0,0,0,0,0,0,0,-1,1,-1], [0,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,-1,1,-1,0,0], [0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,-1,1,-1,0,0,0,0], [0,0,0,0,-1,0,0,0,0,0,0], [0,0,-1,1,-1,0,0,0,0,0,0], [0,0,-1,0,0,0,0,0,0,0,0], [0,1,0,0,1,0,1,0,1,0,1]]]], [ # Z-class [11][06] [[9], [5,9], [1,5,9], [-3,1,5,9], [-3,-3,1,5,9], [-3,-3,-3,1,5,9], [-3,-3,-3,-3,1,5,9], [-3,-3,-3,-3,-3,1,5,9], [-3,-3,-3,-3,-3,-3,1,5,9], [1,-3,-3,-3,-3,-3,-3,1,5,9], [5,1,-3,-3,-3,-3,-3,-3,1,5,9]], [[[0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0]], [[-2,1,0,-1,1,-1,0,1,-1,0,1], [-1,1,1,-1,1,0,0,1,0,0,1], [0,0,1,-1,1,0,0,1,0,0,1], [0,0,1,-1,1,1,-1,1,0,0,1], [0,0,0,-1,1,0,-1,1,-1,0,0], [0,0,0,0,0,0,0,0,-1,1,-1], [1,-1,0,1,-1,0,0,0,0,0,-1], [1,-2,1,1,-2,1,0,-1,1,-1,0], [1,-1,0,1,-2,1,0,-1,1,-1,0], [0,0,-1,1,-1,0,1,-1,0,0,0], [-1,1,-1,0,0,0,0,0,0,0,0]]]], [ # Z-class [11][07] [[8], [5,8], [2,5,8], [-1,2,5,8], [-4,-1,2,5,8], [-4,-4,-1,2,5,8], [-4,-4,-4,-1,2,5,8], [-4,-4,-4,-4,-1,2,5,8], [-1,-4,-4,-4,-4,-1,2,5,8], [2,-1,-4,-4,-4,-4,-1,2,5,8], [5,2,-1,-4,-4,-4,-4,-1,2,5,8]], [[[0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0]], [[-2,0,1,0,-1,0,1,-1,-1,1,1], [-1,0,1,1,-1,0,1,0,-1,1,1], [0,0,0,1,0,-1,1,0,0,0,1], [0,0,0,1,-1,0,1,0,0,0,1], [1,-1,0,1,0,-1,1,1,0,-1,1], [1,-1,-1,1,0,-1,0,1,0,-2,1], [1,-1,-1,1,0,0,-1,1,0,-1,0], [1,0,-1,0,1,0,-2,1,1,-1,-1], [0,1,-1,-1,1,1,-2,0,1,0,-1], [-1,1,0,-1,0,1,-1,0,0,1,-1], [-1,0,1,-1,0,0,0,0,-1,1,0]]]], [ # Z-class [11][08] [[3], [2,3], [1,2,3], [0,1,2,3], [-1,0,1,2,3], [-2,-1,0,1,2,3], [-2,-2,-1,0,1,2,3], [-1,-2,-2,-1,0,1,2,3], [0,-1,-2,-2,-1,0,1,2,3], [1,0,-1,-2,-2,-1,0,1,2,3], [2,1,0,-1,-2,-2,-1,0,1,2,3]], [[[0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,-1,1,0,0,0,-1,0], [0,0,0,-1,0,1,0,0,-1,-1,1], [0,0,-1,0,0,1,0,-1,-1,0,1], [0,-1,0,0,0,1,-1,-1,0,0,1], [-1,0,0,0,0,0,-1,0,0,0,1]], [[-1,-1,0,0,1,0,-1,-1,0,1,1], [0,-1,0,0,1,1,-1,-1,0,1,1], [0,0,-1,0,1,1,0,-1,-1,1,1], [0,0,0,-1,1,1,0,0,-1,0,1], [0,0,0,0,0,1,0,0,0,-1,1], [0,1,0,0,-1,1,0,1,0,-1,0], [0,1,0,0,-1,0,0,1,0,-1,-1], [-1,1,1,0,-1,-1,0,1,1,-1,-1], [-1,0,1,1,-1,-1,-1,1,1,0,-1], [-1,0,0,1,0,-1,-1,0,1,1,-1], [-1,0,0,0,1,-1,-1,0,0,1,0]]]], [ # Z-class [11][09] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,1,0], [-1,0,0,0,0,0,0,0,0,1,0]], [[-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,1,0]]]] ]; MakeImmutable( IMFList[11].matrices );