CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Path: gap4r8 / grp / perf.grp
Views: 418346
#############################################################################
##
#W  perf.grp              GAP Groups Library                 Alexander Hulpke
##                                                             Volkmar Felsch
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
##
##  This file contains the access functions for the Holt/Plesken library
##

#############################################################################
##
#F  PerfGrpLoad(<size>)  force loading of secondary files, return index
##
InstallGlobalFunction( PerfGrpLoad, function(sz)
local p,sel,i,pos;
  if PERFRec=fail then
    ReadGrp("perf0.grp");
  fi;
  # get the index
  pos:=PositionSet(PERFRec.sizes,sz);
  if pos=fail then
    return fail;
  fi;
  if PERFSELECT[pos] then
    return pos;
  fi;
  # get the file number
  p:=PositionSorted(PERFRec.covered,pos);
  if SizeBlist(PERFSELECT)>50 then
    # throw away old to free memory
    sel:=Filtered([1..PERFRec.length],i->PERFSELECT[i]);
    sel:=sel{[1..Length(sel)-25]};
    for i in sel do
      Unbind(PERFGRP[i]);
      PERFSELECT[i]:=false;
    od;
  fi;
  ReadGrp(Concatenation("perf",String(p),".grp"));
  # store loaded info
  if p=1 then
    p:=[0,PERFRec.covered[p]];
  else
    p:=PERFRec.covered{[p-1,p]};
  fi;
  for i in [p[1]+1..p[2]] do
    PERFSELECT[i]:=true;
  od;
  return pos;
end );


#############################################################################
##
#F  SizesPerfectGroups( )
##
##  `SizesPerfectGroups'  returns an ordered list of all integers  that occur
##  as group sizes in the library of perfect groups.
##
InstallGlobalFunction( SizesPerfectGroups, function ( )

    PerfGrpLoad(0);
    # return the requested list.
    return ShallowCopy( PERFRec.sizes );

end );


#############################################################################
##
#F  NumberPerfectGroups( size )
##
##  `NumberPerfectGroups'  returns the number of nonisomorphic perfect groups
##  of size size for 1 <= size <= 1 000 000.
##
##  Exception:  The number of  perfect groups  is not yet known for the eight
##  sizes  61440, 122880, 172032, 245760, 344064, 491520, 688128, and 983040.
##
##  If size is one of these exceptions or if size is out of range,  the value
##  fail will be returned.
##
InstallGlobalFunction( NumberPerfectGroups, function ( size )

    if IsOddInt(size) then return 0;fi;
    PerfGrpLoad(0);

    # get the number and return it.
    if not size in [ 1 .. 1000000 ] or size in PERFRec.notKnown then
      return fail;
    elif not size in PERFRec.sizes then
      return 0;
    else
      return PERFRec.number[ PositionSorted( PERFRec.sizes, size ) ];
    fi;
end );


#############################################################################
##
#F  NumberPerfectLibraryGroups( size )
##
##  `NumberPerfectLibraryGroups'  returns the number of nonisomorphic perfect
##  groups of size size for 1 <= size <= 1 000 000 which are available in the
##  perfect groups library.
##
InstallGlobalFunction( NumberPerfectLibraryGroups, function ( size )
local sizenum;

    if IsOddInt(size) then return 0;fi;
    # get the number and return it.
    sizenum := PerfGrpLoad( size );
    if sizenum = fail or size in PERFRec.notAvailable or size = 1 then
        return 0;
    else
        return PERFRec.number[sizenum];
    fi;

end );

#############################################################################
##
#F  PerfectCentralProduct( <grpdata> ) . . . . . . . . . . . . . . local
##
##  `PerfectCentralProduct'  returns, generators, relators and subgroup
##  information for 
##  the direct product of two perfect groups  or their central product modulo
##  some given central element.
##
##  It is expected that grpdata[1] is either of the form
##      [ 2, <size1>, <n1>, <size2>, <n2> ]
##  or  [ 3, <size1>, <n1>, <size2>, <n2>, <string1>, <string2> ... ]
##
##  In the first case,  the resulting group G is just the direct product D of
##  the n1-th group of size size1, G1, and the n2-th group of size size2, G2,
##  from the perfect groups library.
##
##  In the second case,  the string entries  are expected  to be the names of
##  suitable generators of D  such that their product  is the central element
##  to be factored out in D to contain G.
##
##  Note:  This function is an internal function, hence the arguments are not
##  checked to be in range.  In particular,  the first source entry  which is
##  expected to be 2 or 3 is neither checked nor used.  Moreover, the perfect
##  groups record PERFRec is expected to be already loaded.
##
PerfectCentralProduct := function ( grpdata )
local source,orbsize,nargs,grp1,grp2,names1,names2,names,F,fgens,
      gens1,ngens1,gens2,words1,words2,rels,sub,i,j;

  # get the arguments.
  source:=grpdata[1];
  orbsize:=grpdata[6];
  nargs := Length( source );
  grp1:=PERFGRP[PerfGrpLoad(source[2])][source[3]];
  grp2:=PERFGRP[PerfGrpLoad(source[4])][source[5]];
  # construct names for the generators of the group G to be constructed.
  names1:=List(grp1[1][2],i->Concatenation([i],"1"));
  names2:=List(grp2[1][2],i->Concatenation([i],"2"));
  names := Concatenation( names1, names2 );

  # get the associated free group generators.
  F := FreeGroup( names );
  fgens:=GeneratorsOfGroup(F);
  ngens1 := Length( names1 );
  gens1 := fgens{[1..ngens1]};
  gens2 := fgens{[ngens1+1..Length(names)]};

  # get relators and subgroup words
  words1:=CallFuncList(grp1[1][3],gens1);
  words2:=CallFuncList(grp2[1][3],gens2);

  # common relations
  rels:=Concatenation(words1[1],words2[1]);

  # commuting relations
  for i in gens1 do
    for j in gens2 do
      Add(rels,Comm(i,j));
    od;
  od;

  sub:=[];
  # in case of a central product compute additional relations and store
  # suitable subgroups for a faithful permutation representation.
  if Length(source)>5 then
    Add(rels,Product(List(source{[6..Length(source)]},
        i->fgens[Position(names,i)])));
    for i in words1[2] do
      for j in words2[2] do
        Add(sub,Concatenation(i,j));
      od;
    od;
  fi;

  # return the result
  return [F,fgens,rels,sub];
end;


#############################################################################
##
#F  PerfectSubdirectProduct( <source> ) . . . . . . . . . . . . . . . . local
##
##  `PerfectSubdirectProduct' returns, in form of a finitely presented group,
##  the subdirect product of two perfect groups.
##
##  It expects the associated source entry to be of the form
##      [ 4, <size1>, <n1>, <size2>, <n2>, <over> ]
##  or  [ 4, <size1>, <n1>, <size2>, <n2>, <over>, <n1'>, <n2'> ]
##
##  The resulting group G is the subdirect product of the n1-th group of size
##  size1, G1, and the n2-th group of size size2, G2, from the perfect groups
##  library over the perfect group G0 of size over.
##
##  Note:  This function is an internal function, hence the arguments are not
##  checked to be in range.  In particular,  the first source entry  which is
##  expected  to be  4  is neither  checked nor used.  Moreover,  the perfect
##  groups record PERFRec is expected to be already loaded.
##
##  Warning:  The method used here is   n o t   a general method to construct
##  subdirect products. It is only guaranteed that it works correctly for the
##  given set of examples.
##
PerfectSubdirectProduct := function (grpdata)
local source,grp1,grp2,grp0,ngens0,ngens1,ngens2,gens0,gens1,gens2,nrels0,
      names0,names1,names2,names,F,fgens,ngens,rels,rels0,rels1,rels2,i,j;

  # get the arguments.
  source:=grpdata[1];
  grp1:=PERFGRP[PerfGrpLoad(source[2])][source[3]];
  grp2:=PERFGRP[PerfGrpLoad(source[4])][source[5]];
  grp0:=PERFGRP[PerfGrpLoad(source[6])][1];

  # construct names for the generators of the group G to be constructed.
  ngens0:=Length(grp0[1][2]);
  ngens1:=Length(grp1[1][2]);
  ngens2:=Length(grp2[1][2]);
  names0:=List(grp0[1][2],i->[i]);
  names1:=List(grp1[1][2]{[ngens0+1..ngens1]},i->Concatenation([i],"1"));
  names2:=List(grp2[1][2]{[ngens0+1..ngens2]},i->Concatenation([i],"2"));
  names := Concatenation(names0,names1,names2);

  # get the associated free group generators.
  F := FreeGroup( names );
  fgens:=GeneratorsOfGroup(F);
  ngens:=Length(fgens);
  gens0 := fgens{[1..ngens0]};
  gens1 := fgens{[ngens0+1..ngens1]};
  gens2 := fgens{[ngens1+1..ngens]};

  # initialize relations
  rels:=[];
  for i in gens1 do
    for j in gens2 do
      Add(rels,Comm(i,j));
    od;
  od;

  gens1:=Concatenation(gens0,gens1);
  gens2:=Concatenation(gens0,gens2);

  # get relators
  rels0:=CallFuncList(grp0[1][3],gens0)[1];
  rels1:=CallFuncList(grp1[1][3],gens1)[1];
  rels2:=CallFuncList(grp2[1][3],gens2)[1];

  # construct defining relators for G.
  nrels0:=Length(rels0);
  rels:=Concatenation(rels,rels1{[nrels0+1..Length(rels1)]});
  rels:=Concatenation(rels,rels2{[nrels0+1..Length(rels2)]});

  for i in [ 1 .. ngens0 ] do
    gens1[i] := One(F);
    gens2[i] := One(F);
  od;
  rels1:=CallFuncList(grp1[1][3],gens1)[1];
  rels2:=CallFuncList(grp2[1][3],gens2)[1];

  for i in [ 1 .. nrels0 ] do
    Add(rels,rels0[i]*rels1[i]*rels2[i]);
  od;

  return [F,fgens,rels];
end;

#############################################################################
##
#M  PerfGrpConst(<IsSubgroupFpGroup>,<descript>)
##
InstallMethod(PerfGrpConst,"fp grp",true,[IsSubgroupFpGroup,IsList],0,
function(filter,l)
local G,n;
  if Length(l)=0 then 
    G:=FreeGroup(1);
    return G/GeneratorsOfGroup(G);
  fi;
  n:=l[1][1];
  if n=1 then
    G:=FreeGroup(List(l[1][2],i->[i]));
    G:=Concatenation([G,GeneratorsOfGroup(G)],
                     CallFuncList(l[1][3],GeneratorsOfGroup(G)));
  elif n in [2,3] then
    G:=PerfectCentralProduct(l);
  elif n=4 then
    G:=PerfectSubdirectProduct(l);
  else
    Error("not supported");
  fi;
  G:=G[1]/G[3];
  if Length(l)>1 then
    SetName(G,l[2]);
  fi;
  return G;
end);

#############################################################################
##
#M  PerfGrpConst(<IsPermGroup>,<descript>)
##
InstallMethod(PerfGrpConst,"perm grp",true,[IsPermGroup,IsList],0,
function(filter,l)
local G,i,j,g1,g2,gl,e1,e2,gens,rels,subs,pgens,deg,ind,ct,fp,extend,num;
  if Length(l)=0 then
    # special treatment for the trivial group
    G:= GroupByGenerators( [], () );
    return G;
  fi;
  if l[1][1]=1 then
    gl:=List(l[1][2],i->[i]);
    if Length(l[1])>4 then
      # we have auxiliary generators
      extend:=l[1][5];
      for i in [1..Length(extend)] do
        if extend[i]<>0 then
	  Add(gl,Concatenation("aux",String(i)));
	fi;
      od;
    else
      extend:=false;
    fi;
    gens:=GeneratorsOfGroup(FreeGroup(gl));
    num:=Length(l[1][2]);
    rels:=CallFuncList(l[1][3],gens{[1..num]});
    subs:=rels[2];
    rels:=rels[1];
    if extend<>false then
      # add the further generators in the `auxiliary' component.
      for i in [1..Length(extend)] do
        if extend[i]<>0 then
	  num:=num+1;
	  if IsInt(extend[i]) then
	    Add(rels,gens[i]^extend[i]/gens[num]);
	  else
	    g1:=One(gens[1]);
	    for j in extend[i] do
	      if j>0 then g1:=g1*gens[j];
	      else g1:=g1/gens[-j];fi;
	    od;
	    Add(rels,g1/gens[num]);
	  fi;
	fi;
      od;

      # Tietze
      extend:=PresentationFpGroup(Group(gens)/rels);
      TzOptions(extend).generatorsLimit:=Length(gens);
      TzOptions(extend).printLevel:=0;
      TzGo(extend);
      G:=FpGroupPresentation(extend);
      gl:=gens;
      gens:=FreeGeneratorsOfFpGroup(G);
      rels:=RelatorsOfFpGroup(G);
      subs:=List(subs,i->List(i,j->MappedWord(j,gl,gens)));

    fi;
  elif l[1][1] in [2,4] then
    g1:=PerfGrpConst(IsPermGroup,PERFGRP[PerfGrpLoad(l[1][2])][l[1][3]]);
    g2:=PerfGrpConst(IsPermGroup,PERFGRP[PerfGrpLoad(l[1][4])][l[1][5]]);
    G:=DirectProduct(g1,g2);
    if Length(l[1])>5 then
      gl:=Length(PERFGRP[PerfGrpLoad(l[1][6])][1][1][2]);
      e1:=Embedding(G,1);
      e2:=Embedding(G,2);
      g1:=GeneratorsOfGroup(g1);
      g2:=GeneratorsOfGroup(g2);
      gens:=List([1..gl],i->Image(e1,g1[i])*Image(e2,g2[i]));
      for i in [gl+1..Length(g1)] do
        Add(gens,Image(e1,g1[i]));
      od;
      for i in [gl+1..Length(g2)] do
        Add(gens,Image(e2,g2[i]));
      od;
      G:=Subgroup(G,gens);
    fi;
    if Length(l)>1 then
      SetName(G,l[2]);
    fi;
    return G;
  elif l[1][1]=3 then
    gens:=PerfectCentralProduct(l);
    rels:=gens[3];
    subs:=gens[4];
    gens:=gens[2];
  else
    Error("not supported");
  fi;

  pgens:=List(gens,i->());
  deg:=0;
  if IsBound(l[6]) then
    ind:=l[6];
  else
    ind:=l[1][4];
  fi;
  if not IsList(ind) then
    ind:=[ind];
  fi;
  for i in [1..Length(subs)] do
    ct:=CosetTableFromGensAndRels(gens,rels,subs[i]);
    ct:=ct{[1,3..Length(ct)-1]}; # avoid inverses
    if Length(ct[1])<>ind[i] then
      Error("index!");
    fi;
    ct:=List(ct,i->Concatenation([1..deg],i+deg)); #shift
    ct:=List(ct,PermList); # make perms
    pgens:=List([1..Length(gens)],i->pgens[i]*ct[i]);
    deg:=deg+ind[i];
  od;
  G:= GroupByGenerators( pgens, () );

#  # store the presentation
#  fp:=Group(gens,gens[1]^0)/rels;
#  SetIsomorphismFpGroup(G,GroupHomomorphismByImages(G,fp,pgens,
#                        GeneratorsOfGroup(fp)));
#  SetIsomorphismPermGroup(fp,GroupHomomorphismByImages(fp,G,
#                          GeneratorsOfGroup(fp),pgens));

  if Length(l)>1 then
    SetName(G,l[2]);
  fi;

  return G;
end);

#############################################################################
##
#F  PerfectGroup([<filter>,]<sz>,<nr>) . . . .  Access perfect groups library
##
InstallGlobalFunction( PerfectGroup, function(arg)
local func,sz,p;
  PerfGrpLoad(0); # force loading
  if not IsFunction(arg[1]) then 
    func:=IsSubgroupFpGroup;
    sz:=arg;
  else
    func:=arg[1];
    sz:=arg{[2..Length(arg)]};
  fi;
  # list given
  if Length(sz)=1 then
    if not IsList(sz[1]) then
      sz:=[sz[1],1];
    else
      sz:=sz[1];
    fi;
  fi;
  if sz[1] in PERFRec.notKnown then
    Error("Perfect groups of size ",sz[1]," not known");
  elif sz[1] in PERFRec.notAvailable then
    Error("Perfect groups of size ",sz[1]," not available");
  elif sz[1]=1 then
    Error("The trivial group is not considered to be part of this library");
  fi;
  p:=PerfGrpLoad(sz[1]);
  if p=fail or sz[2]>PERFRec.number[p] then
    Error("PerfectGroup(",sz[1],",",sz[2],") does not exist !");
  fi;
  p:=PerfGrpConst(func,PERFGRP[p][sz[2]]);
  SetSize(p,sz[1]);
  SetPerfectIdentification(p,ShallowCopy(sz));
  SetIsPerfectGroup(p,true);
  SetFilterObj(p,IsPerfectLibraryGroup);
  return p;
end );


#############################################################################
##
#F  DisplayInformationPerfectGroups( <size> ) . . . . . . . . . . . . . . . .
#F  DisplayInformationPerfectGroups( <size>, <n> )  . . . . . . . . . . . . .
#F  DisplayInformationPerfectGroups( [ <size>, <n> ] )  . . . . . . . . . . .
##
##  `DisplayInformationPerfectGroups'  displays  some invariants  of the n-th
##  group of size size from the perfect groups library.
##
##  If no value of n has been specified, the invariants will be displayed for
##  all groups of size size available in the library.
##
InstallGlobalFunction( DisplayInformationPerfectGroups,
    function ( arg )
local size,i,nr,n,leng,sizenum,hpnum,description,centre,orbsize;

  if IsInt(arg[1]) then
    size:=arg[1];
    if Length(arg)=1 then
      nr:=[1..NumberPerfectLibraryGroups(size)];
    else
      nr:=arg[2];
    fi;
  else
    size:=arg[1][1];
    nr:=arg[1][2];
  fi;

  if IsInt(nr) then
    nr:=[nr];
  fi;

  sizenum:=PerfGrpLoad(size);
  if size in PERFRec.notAvailable then
    Print("#I  no information available about size ",size,"\n");
    return;
  elif size in PERFRec.notKnown then
    Print("#I  no information known about size ",size,"\n");
    return;
  fi;

  # loop over the given range.
  for n in nr do

    # get the required data from main list.
    description := PERFGRP[sizenum][n][2];
    hpnum := PERFGRP[sizenum][n][3];
    centre := PERFGRP[sizenum][n][4];
    orbsize := PERFGRP[sizenum][n][6];

    # print the group number.
    Print( "#I Perfect group ", size );
    if Length(nr) > 1 then
	Print( ".", n );
    fi;
    Print( ":  " );

    # print a message if the group is simple or quaqsisimple.
    if centre = -1 then
	if size = 1 then
	    Print( "trivial group  " );
	else
	    Print( "simple group  " );
	fi;
    elif centre < -1 then
	Print( "quasisimple group  " );
	centre := -centre;
    fi;

    # print the Holt-Plesken description.
    Print( description, "\n#I " );

    # print the size of the centre.
    if centre > 1 then
	Print( "  centre = ", centre );
    fi;

    # print the group size.
    Print( "  size = " );
    PrintFactorsInt( size );

    # print the orbit sizes of the available permutation representations.
    if IsInt( orbsize ) then
	Print( "  orbit size = ", orbsize, "\n" );
    else
	orbsize := ShallowCopy( orbsize );
	Sort( orbsize );
	Print( "  orbit sizes = ", orbsize[1] );
	for i in [ 2 .. Length( orbsize ) ] do
	    Print( " + ", orbsize[i] );
	od;
	Print( "\n" );
    fi;

    # print the Holt-Plesken classes and numbers.
    if IsInt( hpnum ) then
	Print( "#I   Holt-Plesken class ", hpnum );
    else
	Print( "#I   Holt-Plesken class ", hpnum[1] );
	Print( " (", hpnum[2], ",", hpnum[3], ")" );
	leng := Length( hpnum );
	if leng > 3 then
	    if leng = 4 then
		Print( " (occurs also in class ", hpnum[4] );
	    else
		Print( " (occurs also in classes ", hpnum[4] );
		for i in [ 5 .. leng ] do
		    Print( ", ", hpnum[i] );
		od;
	    fi;
	    Print( ")" );
	fi;
    fi;
    Print( "\n" );
  od;

end );


#############################################################################
##
#F  SizeNumbersPerfectGroups( <factor>, ..., <factor> ) . . . . . . . . . . .
##
##  `SizeNumbersPerfectGroups'  returns  a list  of the  size numbers  of all
##  perfect library groups whose composition factors cover the given factors.
##  Each  argument  must be  one of the  valid names  of simple factors  or a
##  positive integer.
##
##  The  size number  of a group from the perfect groups library is a pair of
##  the form [ size, n ], where size is the group size and n is the number of
##  the group within the list of all library groups of that size.
##
InstallGlobalFunction( SizeNumbersPerfectGroups, function ( arg )
local a6a6, a6a6a6, empty, factor, minsize, minsizenum, n, nn, num, pos,
      simple, simple2, size, sizenum, sizenums;

    # load the perfect groups record PERFRec if it is not yet available.
    PerfGrpLoad( 0 );

    # get and check the arguments, and get the minimal group size.
    simple := [ ];
    minsize := 1;
    for factor in arg do
        if IsInt( factor ) then
            if factor < 1 then
                Error( "illegal order of abelian factor" );
            fi;
            minsize := minsize * factor;
        else
            pos := Position( PERFRec.nameSimpleGroup, factor );
            if pos = fail then
                Error( "illegal name of simple factor" );
            fi;
            num := PERFRec.numberSimpleGroup[pos];
            sizenum := PERFRec.sizeNumberSimpleGroup[num];
            minsize := minsize * sizenum[1];
            Add( simple, num );
        fi;
    od;
    empty := simple = [ ];
    if not empty then
        if Length( simple ) = 1 then
            simple := simple[1];
        else
            Sort( simple );
        fi;
    fi;

    # initialize the resulting list of size numbers;
    sizenums := [ ];
    a6a6 := [1,1];
    a6a6a6 := [1,1,1];

    # get the first size to be handled.
    minsizenum := Maximum(2,PositionSorted( PERFRec.sizes, minsize ));

    # loop over all library groups of size >= minsize.
    for sizenum in [ minsizenum .. Length( PERFRec.sizes ) ] do

        # check the size for being a multiple of minsize.
        if PERFRec.sizes[sizenum] mod minsize = 0 then

            # loop over the library groups of size size.
            size := PERFRec.sizes[sizenum];
	    PerfGrpLoad(size);
            nn := PERFRec.number[sizenum];
            for n in [ 1 .. nn ] do
	      if PERFGRP[sizenum][n]<>fail then
                simple2 := PERFGRP[sizenum][n][5];
                if simple = simple2 or empty or
                    IsList( simple2 ) and ( simple in simple2 or
                    ( simple2 = a6a6 and simple = a6a6a6 ) ) then
                    # add the pair [size,n] to the list of size numbers.
                    Add( sizenums, [ size, n ] );
                fi;
	      fi;
            od;
        fi;
    od;

    # return the list of size numbers.
    return sizenums;
end );


#############################################################################
##
#M  PerfectIdentification(<G>) . . . . . . . . . . . . id. for perfect groups
##
InstallMethod(PerfectIdentification,"id. for perfect groups",true,
  [IsGroup],0,
function(G)
local s,l;
  if not IsPerfectGroup(G) then
    return fail;
  fi;
  s:=Size(G);
  PerfGrpLoad(0);
  if s>=10^6 or s in PERFRec.notAvailable or s in PERFRec.notKnown then
    Print("#W  No information about size ",s," available\n");
    return fail;
  fi;
  l:=NumberPerfectLibraryGroups(s);
  while l>1 do
    if IsomorphismGroups(G,PerfectGroup(IsPermGroup,s,l))<>fail then
      return [s,l];
    fi;
    l:=l-1;
  od;
  return [s,1];
end);


#############################################################################
##
#M  IsomorphismFpGroup   for perfect library groups
##
InstallMethod(IsomorphismFpGroup,"perfect library groups",true,
  [IsPerfectLibraryGroup],100,
function(G)
local H,hom,permgens,fpgens;
  H:=PerfectGroup(IsSubgroupFpGroup,PerfectIdentification(G));
  permgens:=GeneratorsOfGroup(G);
  fpgens:=GeneratorsOfGroup(H);
  if Length(permgens)<>Length(fpgens) then
    # remove auxiliary gens
    hom:=GroupHomomorphismByImagesNC(G,H,permgens{[1..Length(fpgens)]},fpgens);
  else
    hom:=GroupHomomorphismByImagesNC(G,H,permgens,fpgens);
  fi;
  SetIsInjective(hom,true);
  SetIsSurjective(hom,true);
  return hom;
end);

#############################################################################
##
#M  IsomorphismPermGroup   for perfect library groups
##
InstallMethod(IsomorphismPermGroup,"perfect library groups",true,
  [IsPerfectLibraryGroup],100,
function(G)
local H,hom,permgens,fpgens;
  H:=PerfectGroup(IsPermGroup,PerfectIdentification(G));
  fpgens:=GeneratorsOfGroup(G);
  permgens:=GeneratorsOfGroup(H);
  if Length(permgens)<>Length(fpgens) then
    # remove auxiliary gens
    hom:=GroupHomomorphismByImagesNC(G,H,fpgens,permgens{[1..Length(fpgens)]});
  else
    hom:=GroupHomomorphismByImagesNC(G,H,fpgens,permgens);
  fi;
  SetIsInjective(hom,true);
  SetIsSurjective(hom,true);
  return hom;
end);

#############################################################################
##
#E  perf.grp . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##