Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W addgphom.gi GAP library Scott Murray #W Alexander Hulpke ## ## #Y (C) 2000 School Math and Comp. Sci., University of St Andrews, Scotland #Y Copyright (C) 2002 The GAP Group ## ## This file contains declarations for mappings between groups and additive ## groups. ## ############################################################################# ## #F GroupToAdditiveGroupHomomorphismByFunction( <S>, <R>, <fun> ) #F GroupToAdditiveGroupHomomorphismByFunction( <S>, <R>, <fun>, <invfun> ) ## InstallGlobalFunction(GroupToAdditiveGroupHomomorphismByFunction,function(arg) local map; # no inverse function given if Length(arg) = 3 then # make the general mapping map:= Objectify( NewType(GeneralMappingsFamily(ElementsFamily(FamilyObj(arg[1])), ElementsFamily(FamilyObj(arg[2]))), IsSPMappingByFunctionRep and IsSingleValued and IsTotal and IsGroupToAdditiveGroupHomomorphism ), rec( fun:= arg[3] ) ); # inverse function given elif Length(arg) = 4 then # make the mapping map:= Objectify( NewType(GeneralMappingsFamily(ElementsFamily(FamilyObj(arg[1])), ElementsFamily(FamilyObj(arg[2]))), IsSPMappingByFunctionWithInverseRep and IsBijective and IsGroupToAdditiveGroupHomomorphism ), rec( fun := arg[3], invFun := arg[4] ) ); # otherwise signal an error else Error( "usage: GroupToAdditiveGroupHomomorphismByFunction(<D>,<E>,<fun>[, <inv>])"); fi; SetSource(map,arg[1]); SetRange(map,arg[2]); # return the mapping return map; end ); ############################################################################# ## #E