CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
\begin{sequent}
2
\begin{align*}
3
a: \Obj, b: \Obj ~|~ () \vdash \IsZero \big( \ZeroMorphism( a, b ) \big)
4
\end{align*}
5
\end{sequent}
6
7
\begin{sequent}
8
\begin{align*}
9
a: \Obj, b: \Obj ~|~ () \vdash \IsIdenticalToZeroMorphism \big( \ZeroMorphism( a, b ) \big)
10
\end{align*}
11
\end{sequent}
12
13
\begin{sequent}
14
\begin{align*}
15
a: \Obj ~|~ () \vdash \IsZero \big( \UniversalMorphismIntoZeroObject( a ) \big)
16
\end{align*}
17
\end{sequent}
18
19
\begin{sequent}
20
\begin{align*}
21
a: \Obj ~|~ () \vdash \IsZero \big( \UniversalMorphismFromZeroObject( a ) \big)
22
\end{align*}
23
\end{sequent}
24
25
\begin{sequent}
26
\begin{align*}
27
\alpha: \Mor ~|~ \IsZero(\Source(\alpha)) \vdash \IsZero(\alpha)
28
\end{align*}
29
\end{sequent}
30
31
\begin{sequent}
32
\begin{align*}
33
\alpha: \Mor ~|~ \IsZero(\Range(\alpha)) \vdash \IsZero(\alpha)
34
\end{align*}
35
\end{sequent}
36
37
\begin{sequent}
38
\begin{align*}
39
\alpha: \Mor ~|~ \IsZero(\alpha), \IsMonomorphism(\alpha) \vdash \IsZero(\Source(\alpha))
40
\end{align*}
41
\end{sequent}
42
43
\begin{sequent}
44
\begin{align*}
45
\alpha: \Mor ~|~ \IsZero(\alpha), \IsEpimorphism(\alpha) \vdash \IsZero(\Range(\alpha))
46
\end{align*}
47
\end{sequent}
48
49
\begin{sequent}
50
\begin{align*}
51
\alpha: \Mor, \beta: \Mor ~|~ \IsZero(\alpha) \vdash \IsZero(\PreCompose(\alpha,\beta))
52
\end{align*}
53
\end{sequent}
54
55
\begin{sequent}
56
\begin{align*}
57
\alpha: \Mor, \beta: \Mor ~|~ \IsZero(\beta) \vdash \IsZero(\PreCompose(\alpha,\beta))
58
\end{align*}
59
\end{sequent}
60
61
\begin{sequent}
62
\begin{align*}
63
\alpha: \Mor ~|~ \IsInitial\big( \KernelObject( \alpha ) \big) \vdash \IsMonomorphism( \alpha )
64
\end{align*}
65
\end{sequent}
66
67
\begin{sequent}
68
\begin{align*}
69
\alpha: \Mor ~|~ \IsMonomorphism( \alpha ) \vdash \IsZero( \KernelObject( \alpha ) )
70
\end{align*}
71
\end{sequent}
72
73
\begin{sequent}
74
\begin{align*}
75
\alpha: \Mor ~|~ \IsZero\big( \KernelEmbedding( \alpha ) \big) \vdash \IsMonomorphism( \alpha )
76
\end{align*}
77
\end{sequent}
78
79
\begin{sequent}
80
\begin{align*}
81
\alpha: \Mor ~|~ \IsMonomorphism( \alpha ) \vdash \IsZero( \KernelEmbedding( \alpha ) )
82
\end{align*}
83
\end{sequent}
84
85
\begin{sequent}
86
\begin{align*}
87
\alpha: \Mor ~|~ \IsTerminal\big( \CokernelObject( \alpha ) \big) \vdash \IsEpimorphism( \alpha )
88
\end{align*}
89
\end{sequent}
90
91
\begin{sequent}
92
\begin{align*}
93
\alpha: \Mor ~|~ \IsEpimorphism( \alpha ) \vdash \IsZero\big( \CokernelObject( \alpha ) \big)
94
\end{align*}
95
\end{sequent}
96
97
\begin{sequent}
98
\begin{align*}
99
\alpha: \Mor ~|~ \IsZero\big( \CokernelProjection( \alpha ) \big) \vdash \IsEpimorphism( \alpha )
100
\end{align*}
101
\end{sequent}
102
103
\begin{sequent}
104
\begin{align*}
105
\alpha: \Mor ~|~ \IsEpimorphism( \alpha ) \vdash \IsZero\big( \CokernelProjection( \alpha ) \big)
106
\end{align*}
107
\end{sequent}
108
109