CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<?xml version="1.0" encoding="UTF-8"?>
2
3
<!-- This is an automatically generated file. -->
4
<Chapter Label="Chapter_Tensor_Product_and_Internal_Hom">
5
<Heading>Tensor Product and Internal Hom</Heading>
6
7
<P/>
8
<Section Label="Chapter_Tensor_Product_and_Internal_Hom_Section_Monoidal_Categories">
9
<Heading>Monoidal Categories</Heading>
10
11
A <Math>6</Math>-tuple <Math>( \mathbf{C}, \otimes, 1, \alpha, \lambda, \rho )</Math>
12
consisting of
13
<List>
14
<Item>
15
a category <Math>\mathbf{C}</Math>,
16
</Item>
17
<Item>
18
a functor <Math>\otimes: \mathbf{C} \times \mathbf{C} \rightarrow \mathbf{C}</Math>,
19
</Item>
20
<Item>
21
an object <Math>1 \in \mathbf{C}</Math>,
22
</Item>
23
<Item>
24
a natural isomorphism <Math>\alpha_{a,b,c}: a \otimes (b \otimes c) \cong (a \otimes b) \otimes c</Math>,
25
</Item>
26
<Item>
27
a natural isomorphism <Math>\lambda_{a}: 1 \otimes a \cong a</Math>,
28
</Item>
29
<Item>
30
a natural isomorphism <Math>\rho_{a}: a \otimes 1 \cong a</Math>,
31
</Item>
32
</List>
33
is called a <Emph>monoidal category</Emph>, if
34
<List>
35
<Item>
36
for all objects <Math>a,b,c,d</Math>, the pentagon identity holds:
37
<Math>(\alpha_{a,b,c} \otimes \mathrm{id}_d) \circ \alpha_{a,b \otimes c, d} \circ ( \mathrm{id}_a \otimes \alpha_{b,c,d} ) = \alpha_{a \otimes b, c, d} \circ \alpha_{a,b,c \otimes d}</Math>,
38
</Item>
39
<Item>
40
for all objects <Math>a,c</Math>, the triangle identity holds:
41
<Math>( \rho_a \otimes \mathrm{id}_c ) \circ \alpha_{a,1,c} = \mathrm{id}_a \otimes \lambda_c</Math>.
42
</Item>
43
</List>
44
The corresponding GAP property is given by
45
<C>IsMonoidalCategory</C>.
46
<ManSection>
47
<Oper Arg="a,b" Name="TensorProductOnObjects" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
48
<Returns>an object
49
</Returns>
50
<Description>
51
The arguments are two objects <Math>a, b</Math>.
52
The output is the tensor product <Math>a \otimes b</Math>.
53
</Description>
54
</ManSection>
55
56
57
<ManSection>
58
<Oper Arg="C, F" Name="AddTensorProductOnObjects" Label="for IsCapCategory, IsFunction"/>
59
<Returns>nothing
60
</Returns>
61
<Description>
62
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
63
This operations adds the given function <Math>F</Math>
64
to the category for the basic operation <C>TensorProductOnObjects</C>.
65
<Math>F: (a,b) \mapsto a \otimes b</Math>.
66
</Description>
67
</ManSection>
68
69
70
<ManSection>
71
<Oper Arg="alpha, beta" Name="TensorProductOnMorphisms" Label="for IsCapCategoryMorphism, IsCapCategoryMorphism"/>
72
<Returns>a morphism in <Math>\mathrm{Hom}(a \otimes b, a' \otimes b')</Math>
73
</Returns>
74
<Description>
75
The arguments are two morphisms <Math>\alpha: a \rightarrow a', \beta: b \rightarrow b'</Math>.
76
The output is the tensor product <Math>\alpha \otimes \beta</Math>.
77
</Description>
78
</ManSection>
79
80
81
<ManSection>
82
<Oper Arg="s, alpha, beta, r" Name="TensorProductOnMorphismsWithGivenTensorProducts" Label="for IsCapCategoryObject, IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryObject"/>
83
<Returns>a morphism in <Math>\mathrm{Hom}(a \otimes b, a' \otimes b')</Math>
84
</Returns>
85
<Description>
86
The arguments are an object <Math>s = a \otimes b</Math>,
87
two morphisms <Math>\alpha: a \rightarrow a', \beta: b \rightarrow b'</Math>,
88
and an object <Math>r = a' \otimes b'</Math>.
89
The output is the tensor product <Math>\alpha \otimes \beta</Math>.
90
</Description>
91
</ManSection>
92
93
94
<ManSection>
95
<Oper Arg="C, F" Name="AddTensorProductOnMorphismsWithGivenTensorProducts" Label="for IsCapCategory, IsFunction"/>
96
<Returns>nothing
97
</Returns>
98
<Description>
99
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
100
This operations adds the given function <Math>F</Math>
101
to the category for the basic operation <C>TensorProductOnMorphismsWithGivenTensorProducts</C>.
102
<Math>F: ( a \otimes b, \alpha: a \rightarrow a', \beta: b \rightarrow b', a' \otimes b' ) \mapsto \alpha \otimes \beta</Math>.
103
</Description>
104
</ManSection>
105
106
107
<ManSection>
108
<Oper Arg="a, b, c" Name="AssociatorRightToLeft" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
109
<Returns>a morphism in <Math>\mathrm{Hom}( a \otimes (b \otimes c), (a \otimes b) \otimes c )</Math>.
110
</Returns>
111
<Description>
112
The arguments are three objects <Math>a,b,c</Math>.
113
The output is the associator <Math>\alpha_{a,(b,c)}: a \otimes (b \otimes c) \rightarrow (a \otimes b) \otimes c</Math>.
114
</Description>
115
</ManSection>
116
117
118
<ManSection>
119
<Oper Arg="s, a, b, c, r" Name="AssociatorRightToLeftWithGivenTensorProducts" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
120
<Returns>a morphism in <Math>\mathrm{Hom}( a \otimes (b \otimes c), (a \otimes b) \otimes c )</Math>.
121
</Returns>
122
<Description>
123
The arguments are an object <Math>s = a \otimes (b \otimes c)</Math>,
124
three objects <Math>a,b,c</Math>,
125
and an object <Math>r = (a \otimes b) \otimes c</Math>.
126
The output is the associator <Math>\alpha_{a,(b,c)}: a \otimes (b \otimes c) \rightarrow (a \otimes b) \otimes c</Math>.
127
</Description>
128
</ManSection>
129
130
131
<ManSection>
132
<Oper Arg="C, F" Name="AddAssociatorRightToLeftWithGivenTensorProducts" Label="for IsCapCategory, IsFunction"/>
133
<Returns>nothing
134
</Returns>
135
<Description>
136
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
137
This operations adds the given function <Math>F</Math>
138
to the category for the basic operation <C>AssociatorRightToLeftWithGivenTensorProducts</C>.
139
<Math>F: ( a \otimes (b \otimes c), a, b, c, (a \otimes b) \otimes c ) \mapsto \alpha_{a,(b,c)}</Math>.
140
</Description>
141
</ManSection>
142
143
144
<ManSection>
145
<Oper Arg="a, b, c" Name="AssociatorLeftToRight" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
146
<Returns>a morphism in <Math>\mathrm{Hom}( (a \otimes b) \otimes c \rightarrow a \otimes (b \otimes c) )</Math>.
147
</Returns>
148
<Description>
149
The arguments are three objects <Math>a,b,c</Math>.
150
The output is the associator <Math>\alpha_{(a,b),c}: (a \otimes b) \otimes c \rightarrow a \otimes (b \otimes c)</Math>.
151
</Description>
152
</ManSection>
153
154
155
<ManSection>
156
<Oper Arg="s, a, b, c, r" Name="AssociatorLeftToRightWithGivenTensorProducts" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
157
<Returns>a morphism in <Math>\mathrm{Hom}( (a \otimes b) \otimes c \rightarrow a \otimes (b \otimes c) )</Math>.
158
</Returns>
159
<Description>
160
The arguments are an object <Math>s = (a \otimes b) \otimes c</Math>,
161
three objects <Math>a,b,c</Math>,
162
and an object <Math>r = a \otimes (b \otimes c)</Math>.
163
The output is the associator <Math>\alpha_{(a,b),c}: (a \otimes b) \otimes c \rightarrow a \otimes (b \otimes c)</Math>.
164
</Description>
165
</ManSection>
166
167
168
<ManSection>
169
<Oper Arg="C, F" Name="AddAssociatorLeftToRightWithGivenTensorProducts" Label="for IsCapCategory, IsFunction"/>
170
<Returns>nothing
171
</Returns>
172
<Description>
173
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
174
This operations adds the given function <Math>F</Math>
175
to the category for the basic operation <C>AssociatorLeftToRightWithGivenTensorProducts</C>.
176
<Math>F: (( a \otimes b ) \otimes c, a, b, c, a \otimes (b \otimes c )) \mapsto \alpha_{(a,b),c}</Math>.
177
</Description>
178
</ManSection>
179
180
181
<ManSection>
182
<Attr Arg="C" Name="TensorUnit" Label="for IsCapCategory"/>
183
<Returns>an object
184
</Returns>
185
<Description>
186
The argument is a category <Math>\mathbf{C}</Math>.
187
The output is the tensor unit <Math>1</Math> of <Math>\mathbf{C}</Math>.
188
</Description>
189
</ManSection>
190
191
192
<ManSection>
193
<Oper Arg="C, F" Name="AddTensorUnit" Label="for IsCapCategory, IsFunction"/>
194
<Returns>nothing
195
</Returns>
196
<Description>
197
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
198
This operations adds the given function <Math>F</Math>
199
to the category for the basic operation <C>TensorUnit</C>.
200
<Math>F: ( ) \mapsto 1</Math>.
201
</Description>
202
</ManSection>
203
204
205
<ManSection>
206
<Attr Arg="a" Name="LeftUnitor" Label="for IsCapCategoryObject"/>
207
<Returns>a morphism in <Math>\mathrm{Hom}(1 \otimes a, a )</Math>
208
</Returns>
209
<Description>
210
The argument is an object <Math>a</Math>.
211
The output is the left unitor <Math>\lambda_a: 1 \otimes a \rightarrow a</Math>.
212
</Description>
213
</ManSection>
214
215
216
<ManSection>
217
<Oper Arg="a, s" Name="LeftUnitorWithGivenTensorProduct" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
218
<Returns>a morphism in <Math>\mathrm{Hom}(1 \otimes a, a )</Math>
219
</Returns>
220
<Description>
221
The arguments are an object <Math>a</Math> and an object <Math>s = 1 \otimes a</Math>.
222
The output is the left unitor <Math>\lambda_a: 1 \otimes a \rightarrow a</Math>.
223
</Description>
224
</ManSection>
225
226
227
<ManSection>
228
<Oper Arg="C, F" Name="AddLeftUnitorWithGivenTensorProduct" Label="for IsCapCategory, IsFunction"/>
229
<Returns>nothing
230
</Returns>
231
<Description>
232
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
233
This operations adds the given function <Math>F</Math>
234
to the category for the basic operation <C>LeftUnitorWithGivenTensorProduct</C>.
235
<Math>F: (a, 1 \otimes a) \mapsto \lambda_a</Math>.
236
</Description>
237
</ManSection>
238
239
240
<ManSection>
241
<Attr Arg="a" Name="LeftUnitorInverse" Label="for IsCapCategoryObject"/>
242
<Returns>a morphism in <Math>\mathrm{Hom}(a, 1 \otimes a)</Math>
243
</Returns>
244
<Description>
245
The argument is an object <Math>a</Math>.
246
The output is the inverse of the left unitor <Math>\lambda_a^{-1}: a \rightarrow 1 \otimes a</Math>.
247
</Description>
248
</ManSection>
249
250
251
<ManSection>
252
<Oper Arg="a, r" Name="LeftUnitorInverseWithGivenTensorProduct" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
253
<Returns>a morphism in <Math>\mathrm{Hom}(a, 1 \otimes a)</Math>
254
</Returns>
255
<Description>
256
The argument is an object <Math>a</Math> and an object <Math>r = 1 \otimes a</Math>.
257
The output is the inverse of the left unitor <Math>\lambda_a^{-1}: a \rightarrow 1 \otimes a</Math>.
258
</Description>
259
</ManSection>
260
261
262
<ManSection>
263
<Oper Arg="C, F" Name="AddLeftUnitorInverseWithGivenTensorProduct" Label="for IsCapCategory, IsFunction"/>
264
<Returns>nothing
265
</Returns>
266
<Description>
267
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
268
This operations adds the given function <Math>F</Math>
269
to the category for the basic operation <C>LeftUnitorInverseWithGivenTensorProduct</C>.
270
<Math>F: (a, 1 \otimes a) \mapsto \lambda_a^{-1}</Math>.
271
</Description>
272
</ManSection>
273
274
275
<ManSection>
276
<Attr Arg="a" Name="RightUnitor" Label="for IsCapCategoryObject"/>
277
<Returns>a morphism in <Math>\mathrm{Hom}(a \otimes 1, a )</Math>
278
</Returns>
279
<Description>
280
The argument is an object <Math>a</Math>.
281
The output is the right unitor <Math>\rho_a: a \otimes 1 \rightarrow a</Math>.
282
</Description>
283
</ManSection>
284
285
286
<ManSection>
287
<Oper Arg="a, s" Name="RightUnitorWithGivenTensorProduct" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
288
<Returns>a morphism in <Math>\mathrm{Hom}(a \otimes 1, a )</Math>
289
</Returns>
290
<Description>
291
The arguments are an object <Math>a</Math> and an object <Math>s = a \otimes 1</Math>.
292
The output is the right unitor <Math>\rho_a: a \otimes 1 \rightarrow a</Math>.
293
</Description>
294
</ManSection>
295
296
297
<ManSection>
298
<Oper Arg="C, F" Name="AddRightUnitorWithGivenTensorProduct" Label="for IsCapCategory, IsFunction"/>
299
<Returns>nothing
300
</Returns>
301
<Description>
302
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
303
This operations adds the given function <Math>F</Math>
304
to the category for the basic operation <C>RightUnitorWithGivenTensorProduct</C>.
305
<Math>F: (a, a \otimes 1) \mapsto \rho_a</Math>.
306
</Description>
307
</ManSection>
308
309
310
<ManSection>
311
<Attr Arg="a" Name="RightUnitorInverse" Label="for IsCapCategoryObject"/>
312
<Returns>a morphism in <Math>\mathrm{Hom}( a, a \otimes 1 )</Math>
313
</Returns>
314
<Description>
315
The argument is an object <Math>a</Math>.
316
The output is the inverse of the right unitor <Math>\rho_a^{-1}: a \rightarrow a \otimes 1</Math>.
317
</Description>
318
</ManSection>
319
320
321
<ManSection>
322
<Oper Arg="a, r" Name="RightUnitorInverseWithGivenTensorProduct" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
323
<Returns>a morphism in <Math>\mathrm{Hom}( a, a \otimes 1 )</Math>
324
</Returns>
325
<Description>
326
The arguments are an object <Math>a</Math> and an object <Math>r = a \otimes 1</Math>.
327
The output is the inverse of the right unitor <Math>\rho_a^{-1}: a \rightarrow a \otimes 1</Math>.
328
</Description>
329
</ManSection>
330
331
332
<ManSection>
333
<Oper Arg="C, F" Name="AddRightUnitorInverseWithGivenTensorProduct" Label="for IsCapCategory, IsFunction"/>
334
<Returns>nothing
335
</Returns>
336
<Description>
337
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
338
This operations adds the given function <Math>F</Math>
339
to the category for the basic operation <C>RightUnitorInverseWithGivenTensorProduct</C>.
340
<Math>F: (a, a \otimes 1) \mapsto \rho_a^{-1}</Math>.
341
</Description>
342
</ManSection>
343
344
345
<ManSection>
346
<Oper Arg="a, L" Name="LeftDistributivityExpanding" Label="for IsCapCategoryObject, IsList"/>
347
<Returns>a morphism in <Math>\mathrm{Hom}( a \otimes (b_1 \oplus \dots \oplus b_n), (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n) )</Math>
348
</Returns>
349
<Description>
350
The arguments are an object <Math>a</Math>
351
and a list of objects <Math>L = (b_1, \dots, b_n)</Math>.
352
The output is the left distributivity morphism
353
<Math>a \otimes (b_1 \oplus \dots \oplus b_n) \rightarrow (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n)</Math>.
354
</Description>
355
</ManSection>
356
357
358
<ManSection>
359
<Oper Arg="s, a, L, r" Name="LeftDistributivityExpandingWithGivenObjects" Label="for IsCapCategoryObject, IsCapCategoryObject, IsList, IsCapCategoryObject"/>
360
<Returns>a morphism in <Math>\mathrm{Hom}( s, r )</Math>
361
</Returns>
362
<Description>
363
The arguments are an object <Math>s = a \otimes (b_1 \oplus \dots \oplus b_n)</Math>,
364
an object <Math>a</Math>,
365
a list of objects <Math>L = (b_1, \dots, b_n)</Math>,
366
and an object <Math>r = (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n)</Math>.
367
The output is the left distributivity morphism
368
<Math>s \rightarrow r</Math>.
369
</Description>
370
</ManSection>
371
372
373
<ManSection>
374
<Oper Arg="C, F" Name="AddLeftDistributivityExpandingWithGivenObjects" Label="for IsCapCategory, IsFunction"/>
375
<Returns>nothing
376
</Returns>
377
<Description>
378
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
379
This operations adds the given function <Math>F</Math>
380
to the category for the basic operation <C>LeftDistributivityExpandingWithGivenObjects</C>.
381
<Math>F: (a \otimes (b_1 \oplus \dots \oplus b_n), a, L, (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n)) \mapsto \mathrm{LeftDistributivityExpandingWithGivenObjects}(a,L)</Math>.
382
</Description>
383
</ManSection>
384
385
386
<ManSection>
387
<Oper Arg="a, L" Name="LeftDistributivityFactoring" Label="for IsCapCategoryObject, IsList"/>
388
<Returns>a morphism in <Math>\mathrm{Hom}( (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n), a \otimes (b_1 \oplus \dots \oplus b_n) )</Math>
389
</Returns>
390
<Description>
391
The arguments are an object <Math>a</Math>
392
and a list of objects <Math>L = (b_1, \dots, b_n)</Math>.
393
The output is the left distributivity morphism
394
<Math>(a \otimes b_1) \oplus \dots \oplus (a \otimes b_n) \rightarrow a \otimes (b_1 \oplus \dots \oplus b_n)</Math>.
395
</Description>
396
</ManSection>
397
398
399
<ManSection>
400
<Oper Arg="s, a, L, r" Name="LeftDistributivityFactoringWithGivenObjects" Label="for IsCapCategoryObject, IsCapCategoryObject, IsList, IsCapCategoryObject"/>
401
<Returns>a morphism in <Math>\mathrm{Hom}( s, r )</Math>
402
</Returns>
403
<Description>
404
The arguments are an object <Math>s = (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n)</Math>,
405
an object <Math>a</Math>,
406
a list of objects <Math>L = (b_1, \dots, b_n)</Math>,
407
and an object <Math>r = a \otimes (b_1 \oplus \dots \oplus b_n)</Math>.
408
The output is the left distributivity morphism
409
<Math>s \rightarrow r</Math>.
410
</Description>
411
</ManSection>
412
413
414
<ManSection>
415
<Oper Arg="C, F" Name="AddLeftDistributivityFactoringWithGivenObjects" Label="for IsCapCategory, IsFunction"/>
416
<Returns>nothing
417
</Returns>
418
<Description>
419
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
420
This operations adds the given function <Math>F</Math>
421
to the category for the basic operation <C>LeftDistributivityFactoringWithGivenObjects</C>.
422
<Math>F: ((a \otimes b_1) \oplus \dots \oplus (a \otimes b_n), a, L, a \otimes (b_1 \oplus \dots \oplus b_n)) \mapsto \mathrm{LeftDistributivityFactoringWithGivenObjects}(a,L)</Math>.
423
</Description>
424
</ManSection>
425
426
427
<ManSection>
428
<Oper Arg="L, a" Name="RightDistributivityExpanding" Label="for IsList, IsCapCategoryObject"/>
429
<Returns>a morphism in <Math>\mathrm{Hom}( (b_1 \oplus \dots \oplus b_n) \otimes a, (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a) )</Math>
430
</Returns>
431
<Description>
432
The arguments are a list of objects <Math>L = (b_1, \dots, b_n)</Math>
433
and an object <Math>a</Math>.
434
The output is the right distributivity morphism
435
<Math>(b_1 \oplus \dots \oplus b_n) \otimes a \rightarrow (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a)</Math>.
436
</Description>
437
</ManSection>
438
439
440
<ManSection>
441
<Oper Arg="s, L, a, r" Name="RightDistributivityExpandingWithGivenObjects" Label="for IsCapCategoryObject, IsList, IsCapCategoryObject, IsCapCategoryObject"/>
442
<Returns>a morphism in <Math>\mathrm{Hom}( s, r )</Math>
443
</Returns>
444
<Description>
445
The arguments are an object <Math>s = (b_1 \oplus \dots \oplus b_n) \otimes a</Math>,
446
a list of objects <Math>L = (b_1, \dots, b_n)</Math>,
447
an object <Math>a</Math>,
448
and an object <Math>r = (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a)</Math>.
449
The output is the right distributivity morphism
450
<Math>s \rightarrow r</Math>.
451
</Description>
452
</ManSection>
453
454
455
<ManSection>
456
<Oper Arg="C, F" Name="AddRightDistributivityExpandingWithGivenObjects" Label="for IsCapCategory, IsFunction"/>
457
<Returns>nothing
458
</Returns>
459
<Description>
460
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
461
This operations adds the given function <Math>F</Math>
462
to the category for the basic operation <C>RightDistributivityExpandingWithGivenObjects</C>.
463
<Math>F: ((b_1 \oplus \dots \oplus b_n) \otimes a, L, a, (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a)) \mapsto \mathrm{RightDistributivityExpandingWithGivenObjects}(L,a)</Math>.
464
</Description>
465
</ManSection>
466
467
468
<ManSection>
469
<Oper Arg="L, a" Name="RightDistributivityFactoring" Label="for IsList, IsCapCategoryObject"/>
470
<Returns>a morphism in <Math>\mathrm{Hom}( (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a), (b_1 \oplus \dots \oplus b_n) \otimes a)</Math>
471
</Returns>
472
<Description>
473
The arguments are a list of objects <Math>L = (b_1, \dots, b_n)</Math>
474
and an object <Math>a</Math>.
475
The output is the right distributivity morphism
476
<Math>(b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a) \rightarrow (b_1 \oplus \dots \oplus b_n) \otimes a </Math>.
477
</Description>
478
</ManSection>
479
480
481
<ManSection>
482
<Oper Arg="s, L, a, r" Name="RightDistributivityFactoringWithGivenObjects" Label="for IsCapCategoryObject, IsList, IsCapCategoryObject, IsCapCategoryObject"/>
483
<Returns>a morphism in <Math>\mathrm{Hom}( s, r )</Math>
484
</Returns>
485
<Description>
486
The arguments are an object <Math>s = (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a)</Math>,
487
a list of objects <Math>L = (b_1, \dots, b_n)</Math>,
488
an object <Math>a</Math>,
489
and an object <Math>r = (b_1 \oplus \dots \oplus b_n) \otimes a</Math>.
490
The output is the right distributivity morphism
491
<Math>s \rightarrow r</Math>.
492
</Description>
493
</ManSection>
494
495
496
<ManSection>
497
<Oper Arg="C, F" Name="AddRightDistributivityFactoringWithGivenObjects" Label="for IsCapCategory, IsFunction"/>
498
<Returns>nothing
499
</Returns>
500
<Description>
501
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
502
This operations adds the given function <Math>F</Math>
503
to the category for the basic operation <C>RightDistributivityFactoringWithGivenObjects</C>.
504
<Math>F: ((b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a), L, a, (b_1 \oplus \dots \oplus b_n) \otimes a) \mapsto \mathrm{RightDistributivityFactoringWithGivenObjects}(L,a)</Math>.
505
</Description>
506
</ManSection>
507
508
509
</Section>
510
511
512
<Section Label="Chapter_Tensor_Product_and_Internal_Hom_Section_Braided_Monoidal_Categories">
513
<Heading>Braided Monoidal Categories</Heading>
514
515
A monoidal category <Math>\mathbf{C}</Math> equipped with a natural isomorphism
516
<Math>B_{a,b}: a \otimes b \cong b \otimes a</Math>
517
is called a <Emph>braided monoidal category</Emph>
518
if
519
<List>
520
<Item>
521
<Math>\lambda_a \circ B_{a,1} = \rho_a</Math>,
522
</Item>
523
<Item>
524
<Math>(B_{c,a} \otimes \mathrm{id}_b) \circ \alpha_{c,a,b} \circ B_{a \otimes b,c} = \alpha_{a,c,b} \circ ( \mathrm{id}_a \otimes B_{b,c}) \circ \alpha^{-1}_{a,b,c}</Math>,
525
</Item>
526
<Item>
527
<Math>( \mathrm{id}_b \otimes B_{c,a} ) \circ \alpha^{-1}_{b,c,a} \circ B_{a,b \otimes c} = \alpha^{-1}_{b,a,c} \circ (B_{a,b} \otimes \mathrm{id}_c) \circ \alpha_{a,b,c}</Math>.
528
</Item>
529
</List>
530
The corresponding GAP property is given by
531
<C>IsBraidedMonoidalCategory</C>.
532
<ManSection>
533
<Oper Arg="a,b" Name="Braiding" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
534
<Returns>a morphism in <Math>\mathrm{Hom}( a \otimes b, b \otimes a )</Math>.
535
</Returns>
536
<Description>
537
The arguments are two objects <Math>a,b</Math>.
538
The output is the braiding <Math> B_{a,b}: a \otimes b \rightarrow b \otimes a</Math>.
539
</Description>
540
</ManSection>
541
542
543
<ManSection>
544
<Oper Arg="s,a,b,r" Name="BraidingWithGivenTensorProducts" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
545
<Returns>a morphism in <Math>\mathrm{Hom}( a \otimes b, b \otimes a )</Math>.
546
</Returns>
547
<Description>
548
The arguments are an object <Math>s = a \otimes b</Math>,
549
two objects <Math>a,b</Math>,
550
and an object <Math>r = b \otimes a</Math>.
551
The output is the braiding <Math> B_{a,b}: a \otimes b \rightarrow b \otimes a</Math>.
552
</Description>
553
</ManSection>
554
555
556
<ManSection>
557
<Oper Arg="C, F" Name="AddBraidingWithGivenTensorProducts" Label="for IsCapCategory, IsFunction"/>
558
<Returns>nothing
559
</Returns>
560
<Description>
561
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
562
This operations adds the given function <Math>F</Math>
563
to the category for the basic operation <C>BraidingWithGivenTensorProducts</C>.
564
<Math>F: (a \otimes b, a, b, b \otimes a) \rightarrow B_{a,b}</Math>.
565
</Description>
566
</ManSection>
567
568
569
<ManSection>
570
<Oper Arg="a,b" Name="BraidingInverse" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
571
<Returns>a morphism in <Math>\mathrm{Hom}( b \otimes a, a \otimes b )</Math>.
572
</Returns>
573
<Description>
574
The arguments are two objects <Math>a,b</Math>.
575
The output is the inverse of the braiding <Math> B_{a,b}^{-1}: b \otimes a \rightarrow a \otimes b</Math>.
576
</Description>
577
</ManSection>
578
579
580
<ManSection>
581
<Oper Arg="s,a,b,r" Name="BraidingInverseWithGivenTensorProducts" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
582
<Returns>a morphism in <Math>\mathrm{Hom}( b \otimes a, a \otimes b )</Math>.
583
</Returns>
584
<Description>
585
The arguments are an object <Math>s = b \otimes a</Math>,
586
two objects <Math>a,b</Math>,
587
and an object <Math>r = a \otimes b</Math>.
588
The output is the braiding <Math> B_{a,b}^{-1}: b \otimes a \rightarrow a \otimes b</Math>.
589
</Description>
590
</ManSection>
591
592
593
<ManSection>
594
<Oper Arg="C, F" Name="AddBraidingInverseWithGivenTensorProducts" Label="for IsCapCategory, IsFunction"/>
595
<Returns>nothing
596
</Returns>
597
<Description>
598
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
599
This operations adds the given function <Math>F</Math>
600
to the category for the basic operation <C>BraidingInverseWithGivenTensorProducts</C>.
601
<Math>F: (b \otimes a, a, b, a \otimes b) \rightarrow B_{a,b}^{-1}</Math>.
602
</Description>
603
</ManSection>
604
605
606
</Section>
607
608
609
<Section Label="Chapter_Tensor_Product_and_Internal_Hom_Section_Symmetric_Monoidal_Categories">
610
<Heading>Symmetric Monoidal Categories</Heading>
611
612
A braided monoidal category <Math>\mathbf{C}</Math> is called <Emph>symmetric monoidal category</Emph>
613
if <Math>B_{a,b}^{-1} = B_{b,a}</Math>.
614
The corresponding GAP property is given by
615
<C>IsSymmetricMonoidalCategory</C>.
616
</Section>
617
618
619
<Section Label="Chapter_Tensor_Product_and_Internal_Hom_Section_Symmetric_Closed_Monoidal_Categories">
620
<Heading>Symmetric Closed Monoidal Categories</Heading>
621
622
A symmetric monoidal category <Math>\mathbf{C}</Math>
623
which has for each functor <Math>- \otimes b: \mathbf{C} \rightarrow \mathbf{C}</Math>
624
a right adjoint (denoted by <Math>\underline{\mathrm{Hom}}(b,-)</Math>)
625
is called a <Emph>symmetric closed monoidal category</Emph>.
626
The corresponding GAP property is given by
627
<C>IsSymmetricClosedMonoidalCategory</C>.
628
<ManSection>
629
<Oper Arg="a, b" Name="InternalHomOnObjects" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
630
<Returns>an object
631
</Returns>
632
<Description>
633
The arguments are two objects <Math>a,b</Math>.
634
The output is the internal hom object <Math>\underline{\mathrm{Hom}}(a,b)</Math>.
635
</Description>
636
</ManSection>
637
638
639
<ManSection>
640
<Oper Arg="C, F" Name="AddInternalHomOnObjects" Label="for IsCapCategory, IsFunction"/>
641
<Returns>nothing
642
</Returns>
643
<Description>
644
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
645
This operations adds the given function <Math>F</Math>
646
to the category for the basic operation <C>InternalHomOnObjects</C>.
647
<Math>F: (a,b) \mapsto \underline{\mathrm{Hom}}(a,b)</Math>.
648
</Description>
649
</ManSection>
650
651
652
<ManSection>
653
<Oper Arg="alpha, beta" Name="InternalHomOnMorphisms" Label="for IsCapCategoryMorphism, IsCapCategoryMorphism"/>
654
<Returns>a morphism in <Math>\mathrm{Hom}( \underline{\mathrm{Hom}}(a',b), \underline{\mathrm{Hom}}(a,b') )</Math>
655
</Returns>
656
<Description>
657
The arguments are two morphisms <Math>\alpha: a \rightarrow a', \beta: b \rightarrow b'</Math>.
658
The output is the internal hom morphism
659
<Math>\underline{\mathrm{Hom}}(\alpha,\beta): \underline{\mathrm{Hom}}(a',b) \rightarrow \underline{\mathrm{Hom}}(a,b')</Math>.
660
</Description>
661
</ManSection>
662
663
664
<ManSection>
665
<Oper Arg="s, alpha, beta, r" Name="InternalHomOnMorphismsWithGivenInternalHoms" Label="for IsCapCategoryObject, IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryObject"/>
666
<Returns>a morphism in <Math>\mathrm{Hom}( \underline{\mathrm{Hom}}(a',b), \underline{\mathrm{Hom}}(a,b') )</Math>
667
</Returns>
668
<Description>
669
The arguments are an object <Math>s = \underline{\mathrm{Hom}}(a',b)</Math>,
670
two morphisms <Math>\alpha: a \rightarrow a', \beta: b \rightarrow b'</Math>,
671
and an object <Math>r = \underline{\mathrm{Hom}}(a,b')</Math>.
672
The output is the internal hom morphism
673
<Math>\underline{\mathrm{Hom}}(\alpha,\beta): \underline{\mathrm{Hom}}(a',b) \rightarrow \underline{\mathrm{Hom}}(a,b')</Math>.
674
</Description>
675
</ManSection>
676
677
678
<ManSection>
679
<Oper Arg="C, F" Name="AddInternalHomOnMorphismsWithGivenInternalHoms" Label="for IsCapCategory, IsFunction"/>
680
<Returns>nothing
681
</Returns>
682
<Description>
683
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
684
This operations adds the given function <Math>F</Math>
685
to the category for the basic operation <C>InternalHomOnMorphismsWithGivenInternalHoms</C>.
686
<Math>F: (\underline{\mathrm{Hom}}(a',b), \alpha: a \rightarrow a', \beta: b \rightarrow b', \underline{\mathrm{Hom}}(a,b') ) \mapsto \underline{\mathrm{Hom}}(\alpha,\beta)</Math>.
687
</Description>
688
</ManSection>
689
690
691
<ManSection>
692
<Oper Arg="a,b" Name="EvaluationMorphism" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
693
<Returns>a morphism in <Math>\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b) \otimes a, b )</Math>.
694
</Returns>
695
<Description>
696
The arguments are two objects <Math>a, b</Math>.
697
The output is the evaluation morphism <Math>\mathrm{ev}_{a,b}: \mathrm{\underline{Hom}}(a,b) \otimes a \rightarrow b</Math>, i.e.,
698
the counit of the tensor hom adjunction.
699
</Description>
700
</ManSection>
701
702
703
<ManSection>
704
<Oper Arg="a,b, s" Name="EvaluationMorphismWithGivenSource" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
705
<Returns>a morphism in <Math>\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b) \otimes a, b )</Math>.
706
</Returns>
707
<Description>
708
The arguments are two objects <Math>a,b</Math> and an object <Math>s = \mathrm{\underline{Hom}}(a,b) \otimes a</Math>.
709
The output is the evaluation morphism <Math>\mathrm{ev}_{a,b}: \mathrm{\underline{Hom}}(a,b) \otimes a \rightarrow b</Math>, i.e.,
710
the counit of the tensor hom adjunction.
711
</Description>
712
</ManSection>
713
714
715
<ManSection>
716
<Oper Arg="C, F" Name="AddEvaluationMorphismWithGivenSource" Label="for IsCapCategory, IsFunction"/>
717
<Returns>nothing
718
</Returns>
719
<Description>
720
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
721
This operations adds the given function <Math>F</Math>
722
to the category for the basic operation <C>EvaluationMorphismWithGivenSource</C>.
723
<Math>F: (a, b, \mathrm{\underline{Hom}}(a,b) \otimes a) \mapsto \mathrm{ev}_{a,b}</Math>.
724
</Description>
725
</ManSection>
726
727
728
<ManSection>
729
<Oper Arg="a,b" Name="CoevaluationMorphism" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
730
<Returns>a morphism in <Math>\mathrm{Hom}( a, \mathrm{\underline{Hom}}(b, a \otimes b) )</Math>.
731
</Returns>
732
<Description>
733
The arguments are two objects <Math>a,b</Math>.
734
The output is the coevaluation morphism <Math>\mathrm{coev}_{a,b}: a \rightarrow \mathrm{\underline{Hom}(b, a \otimes b)}</Math>, i.e.,
735
the unit of the tensor hom adjunction.
736
</Description>
737
</ManSection>
738
739
740
<ManSection>
741
<Oper Arg="a,b,r" Name="CoevaluationMorphismWithGivenRange" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
742
<Returns>a morphism in <Math>\mathrm{Hom}( a, \mathrm{\underline{Hom}}(b, a \otimes b) )</Math>.
743
</Returns>
744
<Description>
745
The arguments are two objects <Math>a,b</Math> and an object <Math>r = \mathrm{\underline{Hom}(b, a \otimes b)}</Math>.
746
The output is the coevaluation morphism <Math>\mathrm{coev}_{a,b}: a \rightarrow \mathrm{\underline{Hom}(b, a \otimes b)}</Math>, i.e.,
747
the unit of the tensor hom adjunction.
748
</Description>
749
</ManSection>
750
751
752
<ManSection>
753
<Oper Arg="C, F" Name="AddCoevaluationMorphismWithGivenRange" Label="for IsCapCategory, IsFunction"/>
754
<Returns>nothing
755
</Returns>
756
<Description>
757
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
758
This operations adds the given function <Math>F</Math>
759
to the category for the basic operation <C>CoevaluationMorphismWithGivenRange</C>.
760
<Math>F: (a, b, \mathrm{\underline{Hom}}(b, a \otimes b)) \mapsto \mathrm{coev}_{a,b}</Math>.
761
</Description>
762
</ManSection>
763
764
765
<ManSection>
766
<Oper Arg="a, b, f" Name="TensorProductToInternalHomAdjunctionMap" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryMorphism"/>
767
<Returns>a morphism in <Math>\mathrm{Hom}( a, \mathrm{\underline{Hom}}(b,c) )</Math>.
768
</Returns>
769
<Description>
770
The arguments are objects <Math>a,b</Math> and a morphism <Math>f: a \otimes b \rightarrow c</Math>.
771
The output is a morphism <Math>g: a \rightarrow \mathrm{\underline{Hom}}(b,c)</Math>
772
corresponding to <Math>f</Math> under the tensor hom adjunction.
773
</Description>
774
</ManSection>
775
776
777
<ManSection>
778
<Oper Arg="C, F" Name="AddTensorProductToInternalHomAdjunctionMap" Label="for IsCapCategory, IsFunction"/>
779
<Returns>nothing
780
</Returns>
781
<Description>
782
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
783
This operations adds the given function <Math>F</Math>
784
to the category for the basic operation <C>TensorProductToInternalHomAdjunctionMap</C>.
785
<Math>F: (a, b, f: a \otimes b \rightarrow c) \mapsto ( g: a \rightarrow \mathrm{\underline{Hom}}(b,c) )</Math>.
786
</Description>
787
</ManSection>
788
789
790
<ManSection>
791
<Oper Arg="b, c, g" Name="InternalHomToTensorProductAdjunctionMap" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryMorphism"/>
792
<Returns>a morphism in <Math>\mathrm{Hom}(a \otimes b, c)</Math>.
793
</Returns>
794
<Description>
795
The arguments are objects <Math>b,c</Math> and a morphism <Math>g: a \rightarrow \mathrm{\underline{Hom}}(b,c)</Math>.
796
The output is a morphism <Math>f: a \otimes b \rightarrow c</Math> corresponding to <Math>g</Math> under the
797
tensor hom adjunction.
798
</Description>
799
</ManSection>
800
801
802
<ManSection>
803
<Oper Arg="C, F" Name="AddInternalHomToTensorProductAdjunctionMap" Label="for IsCapCategory, IsFunction"/>
804
<Returns>nothing
805
</Returns>
806
<Description>
807
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
808
This operations adds the given function <Math>F</Math>
809
to the category for the basic operation <C>InternalHomToTensorProductAdjunctionMap</C>.
810
<Math>F: (b, c, g: a \rightarrow \mathrm{\underline{Hom}}(b,c)) \mapsto ( g: a \otimes b \rightarrow c )</Math>.
811
</Description>
812
</ManSection>
813
814
815
<ManSection>
816
<Oper Arg="a,b,c" Name="MonoidalPreComposeMorphism" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
817
<Returns>a morphism in <Math>\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b) \otimes \mathrm{\underline{Hom}}(b,c), \mathrm{\underline{Hom}}(a,c) )</Math>.
818
</Returns>
819
<Description>
820
The arguments are three objects <Math>a,b,c</Math>.
821
The output is the precomposition morphism
822
<Math>\mathrm{MonoidalPreComposeMorphismWithGivenObjects}_{a,b,c}: \mathrm{\underline{Hom}}(a,b) \otimes \mathrm{\underline{Hom}}(b,c) \rightarrow \mathrm{\underline{Hom}}(a,c)</Math>.
823
</Description>
824
</ManSection>
825
826
827
<ManSection>
828
<Oper Arg="s,a,b,c,r" Name="MonoidalPreComposeMorphismWithGivenObjects" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
829
<Returns>a morphism in <Math>\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b) \otimes \mathrm{\underline{Hom}}(b,c), \mathrm{\underline{Hom}}(a,c) )</Math>.
830
</Returns>
831
<Description>
832
The arguments are
833
an object <Math>s = \mathrm{\underline{Hom}}(a,b) \otimes \mathrm{\underline{Hom}}(b,c)</Math>,
834
three objects <Math>a,b,c</Math>,
835
and an object <Math>r = \mathrm{\underline{Hom}}(a,c)</Math>.
836
The output is the precomposition morphism
837
<Math>\mathrm{MonoidalPreComposeMorphismWithGivenObjects}_{a,b,c}: \mathrm{\underline{Hom}}(a,b) \otimes \mathrm{\underline{Hom}}(b,c) \rightarrow \mathrm{\underline{Hom}}(a,c)</Math>.
838
</Description>
839
</ManSection>
840
841
842
<ManSection>
843
<Oper Arg="C, F" Name="AddMonoidalPreComposeMorphismWithGivenObjects" Label="for IsCapCategory, IsFunction"/>
844
<Returns>nothing
845
</Returns>
846
<Description>
847
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
848
This operations adds the given function <Math>F</Math>
849
to the category for the basic operation <C>MonoidalPreComposeMorphismWithGivenObjects</C>.
850
<Math>F: (\mathrm{\underline{Hom}}(a,b) \otimes \mathrm{\underline{Hom}}(b,c),a,b,c,\mathrm{\underline{Hom}}(a,c)) \mapsto \mathrm{MonoidalPreComposeMorphismWithGivenObjects}_{a,b,c}</Math>.
851
</Description>
852
</ManSection>
853
854
855
<ManSection>
856
<Oper Arg="a,b,c" Name="MonoidalPostComposeMorphism" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
857
<Returns>a morphism in <Math>\mathrm{Hom}( \mathrm{\underline{Hom}}(b,c) \otimes \mathrm{\underline{Hom}}(a,b), \mathrm{\underline{Hom}}(a,c) )</Math>.
858
</Returns>
859
<Description>
860
The arguments are three objects <Math>a,b,c</Math>.
861
The output is the postcomposition morphism
862
<Math>\mathrm{MonoidalPostComposeMorphismWithGivenObjects}_{a,b,c}: \mathrm{\underline{Hom}}(b,c) \otimes \mathrm{\underline{Hom}}(a,b) \rightarrow \mathrm{\underline{Hom}}(a,c)</Math>.
863
</Description>
864
</ManSection>
865
866
867
<ManSection>
868
<Oper Arg="s,a,b,c,r" Name="MonoidalPostComposeMorphismWithGivenObjects" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
869
<Returns>a morphism in <Math>\mathrm{Hom}( \mathrm{\underline{Hom}}(b,c) \otimes \mathrm{\underline{Hom}}(a,b), \mathrm{\underline{Hom}}(a,c) )</Math>.
870
</Returns>
871
<Description>
872
The arguments are
873
an object <Math>s = \mathrm{\underline{Hom}}(b,c) \otimes \mathrm{\underline{Hom}}(a,b)</Math>,
874
three objects <Math>a,b,c</Math>,
875
and an object <Math>r = \mathrm{\underline{Hom}}(a,c)</Math>.
876
The output is the postcomposition morphism
877
<Math>\mathrm{MonoidalPostComposeMorphismWithGivenObjects}_{a,b,c}: \mathrm{\underline{Hom}}(b,c) \otimes \mathrm{\underline{Hom}}(a,b) \rightarrow \mathrm{\underline{Hom}}(a,c)</Math>.
878
</Description>
879
</ManSection>
880
881
882
<ManSection>
883
<Oper Arg="C, F" Name="AddMonoidalPostComposeMorphismWithGivenObjects" Label="for IsCapCategory, IsFunction"/>
884
<Returns>nothing
885
</Returns>
886
<Description>
887
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
888
This operations adds the given function <Math>F</Math>
889
to the category for the basic operation <C>MonoidalPostComposeMorphismWithGivenObjects</C>.
890
<Math>F: (\mathrm{\underline{Hom}}(b,c) \otimes \mathrm{\underline{Hom}}(a,b),a,b,c,\mathrm{\underline{Hom}}(a,c)) \mapsto \mathrm{MonoidalPostComposeMorphismWithGivenObjects}_{a,b,c}</Math>.
891
</Description>
892
</ManSection>
893
894
895
<ManSection>
896
<Attr Arg="a" Name="DualOnObjects" Label="for IsCapCategoryObject"/>
897
<Returns>an object
898
</Returns>
899
<Description>
900
The argument is an object <Math>a</Math>.
901
The output is its dual object <Math>a^{\vee}</Math>.
902
</Description>
903
</ManSection>
904
905
906
<ManSection>
907
<Oper Arg="C, F" Name="AddDualOnObjects" Label="for IsCapCategory, IsFunction"/>
908
<Returns>nothing
909
</Returns>
910
<Description>
911
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
912
This operations adds the given function <Math>F</Math>
913
to the category for the basic operation <C>DualOnObjects</C>.
914
<Math>F: a \mapsto a^{\vee}</Math>.
915
</Description>
916
</ManSection>
917
918
919
<ManSection>
920
<Attr Arg="alpha" Name="DualOnMorphisms" Label="for IsCapCategoryMorphism"/>
921
<Returns>a morphism in <Math>\mathrm{Hom}( b^{\vee}, a^{\vee} )</Math>.
922
</Returns>
923
<Description>
924
The argument is a morphism <Math>\alpha: a \rightarrow b</Math>.
925
The output is its dual morphism <Math>\alpha^{\vee}: b^{\vee} \rightarrow a^{\vee}</Math>.
926
</Description>
927
</ManSection>
928
929
930
<ManSection>
931
<Oper Arg="s,alpha,r" Name="DualOnMorphismsWithGivenDuals" Label="for IsCapCategoryObject, IsCapCategoryMorphism, IsCapCategoryObject"/>
932
<Returns>a morphism in <Math>\mathrm{Hom}( b^{\vee}, a^{\vee} )</Math>.
933
</Returns>
934
<Description>
935
The argument is an object <Math>s = b^{\vee}</Math>,
936
a morphism <Math>\alpha: a \rightarrow b</Math>,
937
and an object <Math>r = a^{\vee}</Math>.
938
The output is the dual morphism <Math>\alpha^{\vee}: b^{\vee} \rightarrow a^{\vee}</Math>.
939
</Description>
940
</ManSection>
941
942
943
<ManSection>
944
<Oper Arg="C, F" Name="AddDualOnMorphismsWithGivenDuals" Label="for IsCapCategory, IsFunction"/>
945
<Returns>nothing
946
</Returns>
947
<Description>
948
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
949
This operations adds the given function <Math>F</Math>
950
to the category for the basic operation <C>DualOnMorphismsWithGivenDuals</C>.
951
<Math>F: (b^{\vee},\alpha,a^{\vee}) \mapsto \alpha^{\vee}</Math>.
952
</Description>
953
</ManSection>
954
955
956
<ManSection>
957
<Attr Arg="a" Name="EvaluationForDual" Label="for IsCapCategoryObject"/>
958
<Returns>a morphism in <Math>\mathrm{Hom}( a^{\vee} \otimes a, 1 )</Math>.
959
</Returns>
960
<Description>
961
The argument is an object <Math>a</Math>.
962
The output is the evaluation morphism <Math>\mathrm{ev}_{a}: a^{\vee} \otimes a \rightarrow 1</Math>.
963
</Description>
964
</ManSection>
965
966
967
<ManSection>
968
<Oper Arg="s,a,r" Name="EvaluationForDualWithGivenTensorProduct" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
969
<Returns>a morphism in <Math>\mathrm{Hom}( a^{\vee} \otimes a, 1 )</Math>.
970
</Returns>
971
<Description>
972
The arguments are an object <Math>s = a^{\vee} \otimes a</Math>,
973
an object <Math>a</Math>,
974
and an object <Math>r = 1</Math>.
975
The output is the evaluation morphism <Math>\mathrm{ev}_{a}: a^{\vee} \otimes a \rightarrow 1</Math>.
976
</Description>
977
</ManSection>
978
979
980
<ManSection>
981
<Oper Arg="C, F" Name="AddEvaluationForDualWithGivenTensorProduct" Label="for IsCapCategory, IsFunction"/>
982
<Returns>nothing
983
</Returns>
984
<Description>
985
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
986
This operations adds the given function <Math>F</Math>
987
to the category for the basic operation <C>EvaluationForDualWithGivenTensorProduct</C>.
988
<Math>F: (a^{\vee} \otimes a, a, 1) \mapsto \mathrm{ev}_{a}</Math>.
989
</Description>
990
</ManSection>
991
992
993
<ManSection>
994
<Attr Arg="a" Name="CoevaluationForDual" Label="for IsCapCategoryObject"/>
995
<Returns>a morphism in <Math>\mathrm{Hom}(1,a \otimes a^{\vee})</Math>.
996
</Returns>
997
<Description>
998
The argument is an object <Math>a</Math>.
999
The output is the coevaluation morphism <Math>\mathrm{coev}_{a}:1 \rightarrow a \otimes a^{\vee}</Math>.
1000
</Description>
1001
</ManSection>
1002
1003
1004
<ManSection>
1005
<Oper Arg="s,a,r" Name="CoevaluationForDualWithGivenTensorProduct" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
1006
<Returns>a morphism in <Math>\mathrm{Hom}(1,a \otimes a^{\vee})</Math>.
1007
</Returns>
1008
<Description>
1009
The arguments are an object <Math>s = 1</Math>,
1010
an object <Math>a</Math>,
1011
and an object <Math>r = a \otimes a^{\vee}</Math>.
1012
The output is the coevaluation morphism <Math>\mathrm{coev}_{a}:1 \rightarrow a \otimes a^{\vee}</Math>.
1013
</Description>
1014
</ManSection>
1015
1016
1017
<ManSection>
1018
<Oper Arg="C, F" Name="AddCoevaluationForDualWithGivenTensorProduct" Label="for IsCapCategory, IsFunction"/>
1019
<Returns>nothing
1020
</Returns>
1021
<Description>
1022
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1023
This operations adds the given function <Math>F</Math>
1024
to the category for the basic operation <C>CoevaluationForDualWithGivenTensorProduct</C>.
1025
<Math>F: (1, a, a \otimes a^{\vee}) \mapsto \mathrm{coev}_{a}</Math>.
1026
</Description>
1027
</ManSection>
1028
1029
1030
<ManSection>
1031
<Attr Arg="a" Name="MorphismToBidual" Label="for IsCapCategoryObject"/>
1032
<Returns>a morphism in <Math>\mathrm{Hom}(a, (a^{\vee})^{\vee})</Math>.
1033
</Returns>
1034
<Description>
1035
The argument is an object <Math>a</Math>.
1036
The output is the morphism to the bidual <Math>a \rightarrow (a^{\vee})^{\vee}</Math>.
1037
</Description>
1038
</ManSection>
1039
1040
1041
<ManSection>
1042
<Oper Arg="a, r" Name="MorphismToBidualWithGivenBidual" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
1043
<Returns>a morphism in <Math>\mathrm{Hom}(a, (a^{\vee})^{\vee})</Math>.
1044
</Returns>
1045
<Description>
1046
The arguments are an object <Math>a</Math>,
1047
and an object <Math>r = (a^{\vee})^{\vee}</Math>.
1048
The output is the morphism to the bidual <Math>a \rightarrow (a^{\vee})^{\vee}</Math>.
1049
</Description>
1050
</ManSection>
1051
1052
1053
<ManSection>
1054
<Oper Arg="C, F" Name="AddMorphismToBidualWithGivenBidual" Label="for IsCapCategory, IsFunction"/>
1055
<Returns>nothing
1056
</Returns>
1057
<Description>
1058
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1059
This operations adds the given function <Math>F</Math>
1060
to the category for the basic operation <C>MorphismToBidualWithGivenBidual</C>.
1061
<Math>F: (a, (a^{\vee})^{\vee}) \mapsto (a \rightarrow (a^{\vee})^{\vee})</Math>.
1062
</Description>
1063
</ManSection>
1064
1065
1066
<ManSection>
1067
<Oper Arg="a,a',b,b'" Name="TensorProductInternalHomCompatibilityMorphism" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
1068
<Returns>a morphism in <Math>\mathrm{Hom}( \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b'))</Math>.
1069
</Returns>
1070
<Description>
1071
The arguments are four objects <Math>a, a', b, b'</Math>.
1072
The output is the natural morphism
1073
<Math>\mathrm{TensorProductInternalHomCompatibilityMorphismWithGivenObjects}_{a,a',b,b'}: \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b') \rightarrow \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b')</Math>.
1074
</Description>
1075
</ManSection>
1076
1077
1078
<ManSection>
1079
<Oper Arg="a,a',b,b',L" Name="TensorProductInternalHomCompatibilityMorphismWithGivenObjects" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsList"/>
1080
<Returns>a morphism in <Math>\mathrm{Hom}( \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b'))</Math>.
1081
</Returns>
1082
<Description>
1083
The arguments are four objects <Math>a, a', b, b'</Math>,
1084
and a list <Math>L = [ \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') ]</Math>.
1085
The output is the natural morphism
1086
<Math>\mathrm{TensorProductInternalHomCompatibilityMorphismWithGivenObjects}_{a,a',b,b'}: \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b') \rightarrow \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b')</Math>.
1087
</Description>
1088
</ManSection>
1089
1090
1091
<ManSection>
1092
<Oper Arg="C, F" Name="AddTensorProductInternalHomCompatibilityMorphismWithGivenObjects" Label="for IsCapCategory, IsFunction"/>
1093
<Returns>nothing
1094
</Returns>
1095
<Description>
1096
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1097
This operations adds the given function <Math>F</Math>
1098
to the category for the basic operation <C>TensorProductInternalHomCompatibilityMorphismWithGivenObjects</C>.
1099
<Math>F: ( a,a',b,b', [ \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') ]) \mapsto \mathrm{TensorProductInternalHomCompatibilityMorphismWithGivenObjects}_{a,a',b,b'}</Math>.
1100
</Description>
1101
</ManSection>
1102
1103
1104
<ManSection>
1105
<Oper Arg="a,b" Name="TensorProductDualityCompatibilityMorphism" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
1106
<Returns>a morphism in <Math>\mathrm{Hom}( a^{\vee} \otimes b^{\vee}, (a \otimes b)^{\vee} )</Math>.
1107
</Returns>
1108
<Description>
1109
The arguments are two objects <Math>a,b</Math>.
1110
The output is the natural morphism
1111
<Math>\mathrm{TensorProductDualityCompatibilityMorphismWithGivenObjects}: a^{\vee} \otimes b^{\vee} \rightarrow (a \otimes b)^{\vee}</Math>.
1112
</Description>
1113
</ManSection>
1114
1115
1116
<ManSection>
1117
<Oper Arg="s,a,b,r" Name="TensorProductDualityCompatibilityMorphismWithGivenObjects" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
1118
<Returns>a morphism in <Math>\mathrm{Hom}( a^{\vee} \otimes b^{\vee}, (a \otimes b)^{\vee} )</Math>.
1119
</Returns>
1120
<Description>
1121
The arguments are an object <Math>s = a^{\vee} \otimes b^{\vee}</Math>,
1122
two objects <Math>a,b</Math>,
1123
and an object <Math>r = (a \otimes b)^{\vee}</Math>.
1124
The output is the natural morphism
1125
<Math>\mathrm{TensorProductDualityCompatibilityMorphismWithGivenObjects}_{a,b}: a^{\vee} \otimes b^{\vee} \rightarrow (a \otimes b)^{\vee}</Math>.
1126
</Description>
1127
</ManSection>
1128
1129
1130
<ManSection>
1131
<Oper Arg="C, F" Name="AddTensorProductDualityCompatibilityMorphismWithGivenObjects" Label="for IsCapCategory, IsFunction"/>
1132
<Returns>nothing
1133
</Returns>
1134
<Description>
1135
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1136
This operations adds the given function <Math>F</Math>
1137
to the category for the basic operation <C>TensorProductDualityCompatibilityMorphismWithGivenObjects</C>.
1138
<Math>F: ( a^{\vee} \otimes b^{\vee}, a, b, (a \otimes b)^{\vee} ) \mapsto \mathrm{TensorProductDualityCompatibilityMorphismWithGivenObjects}_{a,b}</Math>.
1139
</Description>
1140
</ManSection>
1141
1142
1143
<ManSection>
1144
<Oper Arg="a,b" Name="MorphismFromTensorProductToInternalHom" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
1145
<Returns>a morphism in <Math>\mathrm{Hom}( a^{\vee} \otimes b, \mathrm{\underline{Hom}}(a,b) )</Math>.
1146
</Returns>
1147
<Description>
1148
The arguments are two objects <Math>a,b</Math>.
1149
The output is the natural morphism <Math>\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}_{a,b}: a^{\vee} \otimes b \rightarrow \mathrm{\underline{Hom}}(a,b)</Math>.
1150
</Description>
1151
</ManSection>
1152
1153
1154
<ManSection>
1155
<Oper Arg="s,a,b,r" Name="MorphismFromTensorProductToInternalHomWithGivenObjects" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
1156
<Returns>a morphism in <Math>\mathrm{Hom}( a^{\vee} \otimes b, \mathrm{\underline{Hom}}(a,b) )</Math>.
1157
</Returns>
1158
<Description>
1159
The arguments are an object <Math>s = a^{\vee} \otimes b</Math>,
1160
two objects <Math>a,b</Math>,
1161
and an object <Math>r = \mathrm{\underline{Hom}}(a,b)</Math>.
1162
The output is the natural morphism <Math>\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}_{a,b}: a^{\vee} \otimes b \rightarrow \mathrm{\underline{Hom}}(a,b)</Math>.
1163
</Description>
1164
</ManSection>
1165
1166
1167
<ManSection>
1168
<Oper Arg="C, F" Name="AddMorphismFromTensorProductToInternalHomWithGivenObjects" Label="for IsCapCategory, IsFunction"/>
1169
<Returns>nothing
1170
</Returns>
1171
<Description>
1172
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1173
This operations adds the given function <Math>F</Math>
1174
to the category for the basic operation <C>MorphismFromTensorProductToInternalHomWithGivenObjects</C>.
1175
<Math>F: ( a^{\vee} \otimes b, a, b, \mathrm{\underline{Hom}}(a,b) ) \mapsto \mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}_{a,b}</Math>.
1176
</Description>
1177
</ManSection>
1178
1179
1180
<ManSection>
1181
<Oper Arg="a,b" Name="IsomorphismFromTensorProductToInternalHom" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
1182
<Returns>a morphism in <Math>\mathrm{Hom}( a^{\vee} \otimes b, \mathrm{\underline{Hom}}(a,b) )</Math>.
1183
</Returns>
1184
<Description>
1185
The arguments are two objects <Math>a,b</Math>.
1186
The output is the natural morphism <Math>\mathrm{IsomorphismFromTensorProductToInternalHom}_{a,b}: a^{\vee} \otimes b \rightarrow \mathrm{\underline{Hom}}(a,b)</Math>.
1187
</Description>
1188
</ManSection>
1189
1190
1191
<ManSection>
1192
<Oper Arg="C, F" Name="AddIsomorphismFromTensorProductToInternalHom" Label="for IsCapCategory, IsFunction"/>
1193
<Returns>nothing
1194
</Returns>
1195
<Description>
1196
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1197
This operations adds the given function <Math>F</Math>
1198
to the category for the basic operation <C>IsomorphismFromTensorProductToInternalHom</C>.
1199
<Math>F: ( a, b ) \mapsto \mathrm{IsomorphismFromTensorProductToInternalHom}_{a,b}</Math>.
1200
</Description>
1201
</ManSection>
1202
1203
1204
<ManSection>
1205
<Oper Arg="a,b" Name="MorphismFromInternalHomToTensorProduct" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
1206
<Returns>a morphism in <Math>\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b), a^{\vee} \otimes b )</Math>.
1207
</Returns>
1208
<Description>
1209
The arguments are two objects <Math>a,b</Math>.
1210
The output is the inverse of <Math>\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}</Math>, namely
1211
<Math>\mathrm{MorphismFromInternalHomToTensorProductWithGivenObjects}_{a,b}: \mathrm{\underline{Hom}}(a,b) \rightarrow a^{\vee} \otimes b</Math>.
1212
</Description>
1213
</ManSection>
1214
1215
1216
<ManSection>
1217
<Oper Arg="s,a,b,r" Name="MorphismFromInternalHomToTensorProductWithGivenObjects" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
1218
<Returns>a morphism in <Math>\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b), a^{\vee} \otimes b )</Math>.
1219
</Returns>
1220
<Description>
1221
The arguments are an object <Math>s = \mathrm{\underline{Hom}}(a,b)</Math>,
1222
two objects <Math>a,b</Math>,
1223
and an object <Math>r = a^{\vee} \otimes b</Math>.
1224
The output is the inverse of <Math>\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}</Math>, namely
1225
<Math>\mathrm{MorphismFromInternalHomToTensorProductWithGivenObjects}_{a,b}: \mathrm{\underline{Hom}}(a,b) \rightarrow a^{\vee} \otimes b</Math>.
1226
</Description>
1227
</ManSection>
1228
1229
1230
<ManSection>
1231
<Oper Arg="C, F" Name="AddMorphismFromInternalHomToTensorProductWithGivenObjects" Label="for IsCapCategory, IsFunction"/>
1232
<Returns>nothing
1233
</Returns>
1234
<Description>
1235
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1236
This operations adds the given function <Math>F</Math>
1237
to the category for the basic operation <C>MorphismFromInternalHomToTensorProductWithGivenObjects</C>.
1238
<Math>F: ( \mathrm{\underline{Hom}}(a,b),a,b,a^{\vee} \otimes b ) \mapsto \mathrm{MorphismFromInternalHomToTensorProductWithGivenObjects}_{a,b}</Math>.
1239
</Description>
1240
</ManSection>
1241
1242
1243
<ManSection>
1244
<Oper Arg="a,b" Name="IsomorphismFromInternalHomToTensorProduct" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
1245
<Returns>a morphism in <Math>\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b), a^{\vee} \otimes b )</Math>.
1246
</Returns>
1247
<Description>
1248
The arguments are two objects <Math>a,b</Math>.
1249
The output is the inverse of <Math>\mathrm{IsomorphismFromTensorProductToInternalHom}</Math>, namely
1250
<Math>\mathrm{IsomorphismFromInternalHomToTensorProduct}_{a,b}: \mathrm{\underline{Hom}}(a,b) \rightarrow a^{\vee} \otimes b</Math>.
1251
</Description>
1252
</ManSection>
1253
1254
1255
<ManSection>
1256
<Oper Arg="C, F" Name="AddIsomorphismFromInternalHomToTensorProduct" Label="for IsCapCategory, IsFunction"/>
1257
<Returns>nothing
1258
</Returns>
1259
<Description>
1260
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1261
This operations adds the given function <Math>F</Math>
1262
to the category for the basic operation <C>IsomorphismFromInternalHomToTensorProduct</C>.
1263
<Math>F: ( a,b ) \mapsto \mathrm{IsomorphismFromInternalHomToTensorProduct}_{a,b}</Math>.
1264
</Description>
1265
</ManSection>
1266
1267
1268
<ManSection>
1269
<Attr Arg="alpha" Name="TraceMap" Label="for IsCapCategoryMorphism"/>
1270
<Returns>a morphism in <Math>\mathrm{Hom}(1,1)</Math>.
1271
</Returns>
1272
<Description>
1273
The argument is a morphism <Math>\alpha</Math>.
1274
The output is the trace morphism <Math>\mathrm{trace}_{\alpha}: 1 \rightarrow 1</Math>.
1275
</Description>
1276
</ManSection>
1277
1278
1279
<ManSection>
1280
<Oper Arg="C, F" Name="AddTraceMap" Label="for IsCapCategory, IsFunction"/>
1281
<Returns>nothing
1282
</Returns>
1283
<Description>
1284
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1285
This operations adds the given function <Math>F</Math>
1286
to the category for the basic operation <C>TraceMap</C>.
1287
<Math>F: \alpha \mapsto \mathrm{trace}_{\alpha}</Math>
1288
</Description>
1289
</ManSection>
1290
1291
1292
<ManSection>
1293
<Attr Arg="a" Name="RankMorphism" Label="for IsCapCategoryObject"/>
1294
<Returns>a morphism in <Math>\mathrm{Hom}(1,1)</Math>.
1295
</Returns>
1296
<Description>
1297
The argument is an object <Math>a</Math>.
1298
The output is the rank morphism <Math>\mathrm{rank}_a: 1 \rightarrow 1</Math>.
1299
</Description>
1300
</ManSection>
1301
1302
1303
<ManSection>
1304
<Oper Arg="C, F" Name="AddRankMorphism" Label="for IsCapCategory, IsFunction"/>
1305
<Returns>nothing
1306
</Returns>
1307
<Description>
1308
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1309
This operations adds the given function <Math>F</Math>
1310
to the category for the basic operation <C>RankMorphism</C>.
1311
<Math>F: a \mapsto \mathrm{rank}_{a}</Math>
1312
</Description>
1313
</ManSection>
1314
1315
1316
<ManSection>
1317
<Attr Arg="a" Name="IsomorphismFromDualToInternalHom" Label="for IsCapCategoryObject"/>
1318
<Returns>a morphism in <Math>\mathrm{Hom}(a^{\vee}, \mathrm{Hom}(a,1))</Math>.
1319
</Returns>
1320
<Description>
1321
The argument is an object <Math>a</Math>.
1322
The output is the isomorphism
1323
<Math>\mathrm{IsomorphismFromDualToInternalHom}_{a}: a^{\vee} \rightarrow \mathrm{Hom}(a,1)</Math>.
1324
</Description>
1325
</ManSection>
1326
1327
1328
<ManSection>
1329
<Oper Arg="C, F" Name="AddIsomorphismFromDualToInternalHom" Label="for IsCapCategory, IsFunction"/>
1330
<Returns>nothing
1331
</Returns>
1332
<Description>
1333
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1334
This operations adds the given function <Math>F</Math>
1335
to the category for the basic operation <C>IsomorphismFromDualToInternalHom</C>.
1336
<Math>F: a \mapsto \mathrm{IsomorphismFromDualToInternalHom}_{a}</Math>
1337
</Description>
1338
</ManSection>
1339
1340
1341
<ManSection>
1342
<Attr Arg="a" Name="IsomorphismFromInternalHomToDual" Label="for IsCapCategoryObject"/>
1343
<Returns>a morphism in <Math>\mathrm{Hom}(\mathrm{Hom}(a,1), a^{\vee})</Math>.
1344
</Returns>
1345
<Description>
1346
The argument is an object <Math>a</Math>.
1347
The output is the isomorphism
1348
<Math>\mathrm{IsomorphismFromInternalHomToDual}_{a}: \mathrm{Hom}(a,1) \rightarrow a^{\vee}</Math>.
1349
</Description>
1350
</ManSection>
1351
1352
1353
<ManSection>
1354
<Oper Arg="C, F" Name="AddIsomorphismFromInternalHomToDual" Label="for IsCapCategory, IsFunction"/>
1355
<Returns>nothing
1356
</Returns>
1357
<Description>
1358
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1359
This operations adds the given function <Math>F</Math>
1360
to the category for the basic operation <C>IsomorphismFromInternalHomToDual</C>.
1361
<Math>F: a \mapsto \mathrm{IsomorphismFromInternalHomToDual}_{a}</Math>
1362
</Description>
1363
</ManSection>
1364
1365
1366
<ManSection>
1367
<Oper Arg="t, a, alpha" Name="UniversalPropertyOfDual" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryMorphism"/>
1368
<Returns>a morphism in <Math>\mathrm{Hom}(t, a^{\vee})</Math>.
1369
</Returns>
1370
<Description>
1371
The arguments are two objects <Math>t,a</Math>,
1372
and a morphism <Math>\alpha: t \otimes a \rightarrow 1</Math>.
1373
The output is the morphism <Math>t \rightarrow a^{\vee}</Math>
1374
given by the universal property of <Math>a^{\vee}</Math>.
1375
</Description>
1376
</ManSection>
1377
1378
1379
<ManSection>
1380
<Oper Arg="C, F" Name="AddUniversalPropertyOfDual" Label="for IsCapCategory, IsFunction"/>
1381
<Returns>nothing
1382
</Returns>
1383
<Description>
1384
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1385
This operations adds the given function <Math>F</Math>
1386
to the category for the basic operation <C>UniversalPropertyOfDual</C>.
1387
<Math>F: ( t,a,\alpha: t \otimes a \rightarrow 1 ) \mapsto ( t \rightarrow a^{\vee} )</Math>.
1388
</Description>
1389
</ManSection>
1390
1391
1392
<ManSection>
1393
<Attr Arg="alpha" Name="LambdaIntroduction" Label="for IsCapCategoryMorphism"/>
1394
<Returns>a morphism in <Math>\mathrm{Hom}( 1, \mathrm{\underline{Hom}}(a,b) )</Math>.
1395
</Returns>
1396
<Description>
1397
The argument is a morphism <Math>\alpha: a \rightarrow b</Math>.
1398
The output is the corresponding morphism <Math>1 \rightarrow \mathrm{\underline{Hom}}(a,b)</Math>
1399
under the tensor hom adjunction.
1400
</Description>
1401
</ManSection>
1402
1403
1404
<ManSection>
1405
<Oper Arg="C, F" Name="AddLambdaIntroduction" Label="for IsCapCategory, IsFunction"/>
1406
<Returns>nothing
1407
</Returns>
1408
<Description>
1409
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1410
This operations adds the given function <Math>F</Math>
1411
to the category for the basic operation <C>LambdaIntroduction</C>.
1412
<Math>F: ( \alpha: a \rightarrow b ) \mapsto ( 1 \rightarrow \mathrm{\underline{Hom}}(a,b) )</Math>.
1413
</Description>
1414
</ManSection>
1415
1416
1417
<ManSection>
1418
<Oper Arg="a,b,alpha" Name="LambdaElimination" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryMorphism"/>
1419
<Returns>a morphism in <Math>\mathrm{Hom}(a,b)</Math>.
1420
</Returns>
1421
<Description>
1422
The arguments are two objects <Math>a,b</Math>,
1423
and a morphism <Math>\alpha: 1 \rightarrow \mathrm{\underline{Hom}}(a,b)</Math>.
1424
The output is a morphism <Math>a \rightarrow b</Math> corresponding to <Math>\alpha</Math>
1425
under the tensor hom adjunction.
1426
</Description>
1427
</ManSection>
1428
1429
1430
<ManSection>
1431
<Oper Arg="C, F" Name="AddLambdaElimination" Label="for IsCapCategory, IsFunction"/>
1432
<Returns>nothing
1433
</Returns>
1434
<Description>
1435
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1436
This operations adds the given function <Math>F</Math>
1437
to the category for the basic operation <C>LambdaElimination</C>.
1438
<Math>F: ( a,b,\alpha: 1 \rightarrow \mathrm{\underline{Hom}}(a,b) ) \mapsto ( a \rightarrow b )</Math>.
1439
</Description>
1440
</ManSection>
1441
1442
1443
<ManSection>
1444
<Attr Arg="a" Name="IsomorphismFromObjectToInternalHom" Label="for IsCapCategoryObject"/>
1445
<Returns>a morphism in <Math>\mathrm{Hom}(a, \mathrm{\underline{Hom}}(1,a))</Math>.
1446
</Returns>
1447
<Description>
1448
The argument is an object <Math>a</Math>.
1449
The output is the natural isomorphism <Math>a \rightarrow \mathrm{\underline{Hom}}(1,a)</Math>.
1450
</Description>
1451
</ManSection>
1452
1453
1454
<ManSection>
1455
<Oper Arg="a,r" Name="IsomorphismFromObjectToInternalHomWithGivenInternalHom" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
1456
<Returns>a morphism in <Math>\mathrm{Hom}(a, \mathrm{\underline{Hom}}(1,a))</Math>.
1457
</Returns>
1458
<Description>
1459
The argument is an object <Math>a</Math>,
1460
and an object <Math>r = \mathrm{\underline{Hom}}(1,a)</Math>.
1461
The output is the natural isomorphism <Math>a \rightarrow \mathrm{\underline{Hom}}(1,a)</Math>.
1462
</Description>
1463
</ManSection>
1464
1465
1466
<ManSection>
1467
<Oper Arg="C, F" Name="AddIsomorphismFromObjectToInternalHomWithGivenInternalHom" Label="for IsCapCategory, IsFunction"/>
1468
<Returns>nothing
1469
</Returns>
1470
<Description>
1471
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1472
This operations adds the given function <Math>F</Math>
1473
to the category for the basic operation <C>IsomorphismFromObjectToInternalHomWithGivenInternalHom</C>.
1474
<Math>F: ( a, \mathrm{\underline{Hom}}(1,a) ) \mapsto ( a \rightarrow \mathrm{\underline{Hom}}(1,a) )</Math>.
1475
</Description>
1476
</ManSection>
1477
1478
1479
<ManSection>
1480
<Attr Arg="a" Name="IsomorphismFromInternalHomToObject" Label="for IsCapCategoryObject"/>
1481
<Returns>a morphism in <Math>\mathrm{Hom}(\mathrm{\underline{Hom}}(1,a),a)</Math>.
1482
</Returns>
1483
<Description>
1484
The argument is an object <Math>a</Math>.
1485
The output is the natural isomorphism <Math>\mathrm{\underline{Hom}}(1,a) \rightarrow a</Math>.
1486
</Description>
1487
</ManSection>
1488
1489
1490
<ManSection>
1491
<Oper Arg="a,s" Name="IsomorphismFromInternalHomToObjectWithGivenInternalHom" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
1492
<Returns>a morphism in <Math>\mathrm{Hom}(\mathrm{\underline{Hom}}(1,a),a)</Math>.
1493
</Returns>
1494
<Description>
1495
The argument is an object <Math>a</Math>,
1496
and an object <Math>s = \mathrm{\underline{Hom}}(1,a)</Math>.
1497
The output is the natural isomorphism <Math>\mathrm{\underline{Hom}}(1,a) \rightarrow a</Math>.
1498
</Description>
1499
</ManSection>
1500
1501
1502
<ManSection>
1503
<Oper Arg="C, F" Name="AddIsomorphismFromInternalHomToObjectWithGivenInternalHom" Label="for IsCapCategory, IsFunction"/>
1504
<Returns>nothing
1505
</Returns>
1506
<Description>
1507
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1508
This operations adds the given function <Math>F</Math>
1509
to the category for the basic operation <C>IsomorphismFromInternalHomToObjectWithGivenInternalHom</C>.
1510
<Math>F: ( a, \mathrm{\underline{Hom}}(1,a) ) \mapsto ( \mathrm{\underline{Hom}}(1,a) \rightarrow a )</Math>.
1511
</Description>
1512
</ManSection>
1513
1514
1515
</Section>
1516
1517
1518
<Section Label="Chapter_Tensor_Product_and_Internal_Hom_Section_Rigid_Symmetric_Closed_Monoidal_Categories">
1519
<Heading>Rigid Symmetric Closed Monoidal Categories</Heading>
1520
1521
A symmetric closed monoidal category <Math>\mathbf{C}</Math> satisfying
1522
<List>
1523
<Item>
1524
the natural morphism
1525
<Math>\underline{\mathrm{Hom}}(a_1,b_1) \otimes \underline{\mathrm{Hom}}(a_2,b_2) \rightarrow \underline{\mathrm{Hom}}(a_1 \otimes a_2,b_1 \otimes b_2)</Math>
1526
is an isomorphism,
1527
</Item>
1528
<Item>
1529
the natural morphism
1530
<Math>a \rightarrow \underline{\mathrm{Hom}}(\underline{\mathrm{Hom}}(a, 1), 1)</Math>
1531
is an isomorphism
1532
</Item>
1533
</List>
1534
is called a <Emph>rigid symmetric closed monoidal category</Emph>.
1535
<ManSection>
1536
<Oper Arg="a,a',b,b'" Name="TensorProductInternalHomCompatibilityMorphismInverse" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject"/>
1537
<Returns>a morphism in <Math>\mathrm{Hom}( \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b'), \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b'))</Math>.
1538
</Returns>
1539
<Description>
1540
The arguments are four objects <Math>a, a', b, b'</Math>.
1541
The output is the natural morphism
1542
<Math>\mathrm{TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects}_{a,a',b,b'}: \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') \rightarrow \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b')</Math>.
1543
</Description>
1544
</ManSection>
1545
1546
1547
<ManSection>
1548
<Oper Arg="a,a',b,b',L" Name="TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects" Label="for IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryObject, IsList"/>
1549
<Returns>a morphism in <Math>\mathrm{Hom}( \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b'), \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b'))</Math>.
1550
</Returns>
1551
<Description>
1552
The arguments are four objects <Math>a, a', b, b'</Math>,
1553
and a list <Math>L = [ \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') ]</Math>.
1554
The output is the natural morphism
1555
<Math>\mathrm{TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects}_{a,a',b,b'}: \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') \rightarrow \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b')</Math>.
1556
</Description>
1557
</ManSection>
1558
1559
1560
<ManSection>
1561
<Oper Arg="C, F" Name="AddTensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects" Label="for IsCapCategory, IsFunction"/>
1562
<Returns>nothing
1563
</Returns>
1564
<Description>
1565
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1566
This operations adds the given function <Math>F</Math>
1567
to the category for the basic operation <C>TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects</C>.
1568
<Math>F: ( a,a',b,b', [ \mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') ]) \mapsto \mathrm{TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects}_{a,a',b,b'}</Math>.
1569
</Description>
1570
</ManSection>
1571
1572
1573
<ManSection>
1574
<Attr Arg="a" Name="MorphismFromBidual" Label="for IsCapCategoryObject"/>
1575
<Returns>a morphism in <Math>\mathrm{Hom}((a^{\vee})^{\vee},a)</Math>.
1576
</Returns>
1577
<Description>
1578
The argument is an object <Math>a</Math>.
1579
The output is the inverse of the morphism to the bidual <Math>(a^{\vee})^{\vee} \rightarrow a</Math>.
1580
</Description>
1581
</ManSection>
1582
1583
1584
<ManSection>
1585
<Oper Arg="a, s" Name="MorphismFromBidualWithGivenBidual" Label="for IsCapCategoryObject, IsCapCategoryObject"/>
1586
<Returns>a morphism in <Math>\mathrm{Hom}((a^{\vee})^{\vee},a)</Math>.
1587
</Returns>
1588
<Description>
1589
The argument is an object <Math>a</Math>,
1590
and an object <Math>s = (a^{\vee})^{\vee}</Math>.
1591
The output is the inverse of the morphism to the bidual <Math>(a^{\vee})^{\vee} \rightarrow a</Math>.
1592
</Description>
1593
</ManSection>
1594
1595
1596
<ManSection>
1597
<Oper Arg="C, F" Name="AddMorphismFromBidualWithGivenBidual" Label="for IsCapCategory, IsFunction"/>
1598
<Returns>nothing
1599
</Returns>
1600
<Description>
1601
The arguments are a category <Math>C</Math> and a function <Math>F</Math>.
1602
This operations adds the given function <Math>F</Math>
1603
to the category for the basic operation <C>MorphismFromBidualWithGivenBidual</C>.
1604
<Math>F: (a, (a^{\vee})^{\vee}) \mapsto ((a^{\vee})^{\vee} \rightarrow a)</Math>.
1605
</Description>
1606
</ManSection>
1607
1608
1609
</Section>
1610
1611
1612
<P/>
1613
</Chapter>
1614
1615
1616