Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X5 [33X[0;0YCategory 2-Cells[133X[101X234[1X5.1 [33X[0;0YAttributes for the Type of 2-Cells[133X[101X56[1X5.1-1 Source[101X78[29X[2XSource[102X( [3Xc[103X ) [32X attribute9[6XReturns:[106X [33X[0;10Ya morphism[133X1011[33X[0;0YThe argument is a [23X2[123X-cell [23Xc: \alpha \rightarrow \beta[123X. The output is its12source [23X\alpha[123X.[133X1314[1X5.1-2 Range[101X1516[29X[2XRange[102X( [3Xc[103X ) [32X attribute17[6XReturns:[106X [33X[0;10Ya morphism[133X1819[33X[0;0YThe argument is a [23X2[123X-cell [23Xc: \alpha \rightarrow \beta[123X. The output is its20range [23X\beta[123X.[133X212223[1X5.2 [33X[0;0YIdentity 2-Cell and Composition of 2-Cells[133X[101X2425[1X5.2-1 IdentityTwoCell[101X2627[29X[2XIdentityTwoCell[102X( [3Xalpha[103X ) [32X attribute28[6XReturns:[106X [33X[0;10Ya [23X2[123X-cell[133X2930[33X[0;0YThe argument is a morphism [23X\alpha[123X. The output is its identity [23X2[123X-cell31[23X\mathrm{id}_{\alpha}: \alpha \rightarrow \alpha[123X.[133X3233[1X5.2-2 AddIdentityTwoCell[101X3435[29X[2XAddIdentityTwoCell[102X( [3XC[103X, [3XF[103X ) [32X operation36[6XReturns:[106X [33X[0;10Ynothing[133X3738[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the39given function [23XF[123X to the category for the basic operation [10XIdentityTwoCell[110X. [23XF:40\alpha \mapsto \mathrm{id}_{\alpha}[123X.[133X4142[1X5.2-3 HorizontalPreCompose[101X4344[29X[2XHorizontalPreCompose[102X( [3Xc[103X, [3Xd[103X ) [32X operation45[6XReturns:[106X [33X[0;10Ya [23X2[123X-cell[133X4647[33X[0;0YThe arguments are two [23X2[123X-cells [23Xc: \alpha \rightarrow \beta[123X, [23Xd: \gamma48\rightarrow \delta[123X between morphisms [23X\alpha, \beta: a \rightarrow b[123X and49[23X\gamma, \delta: b \rightarrow c[123X. The output is their horizontal composition50[23Xd \ast c: (\gamma \circ \alpha) \rightarrow (\delta \circ \beta)[123X.[133X5152[1X5.2-4 AddHorizontalPreCompose[101X5354[29X[2XAddHorizontalPreCompose[102X( [3XC[103X, [3XF[103X ) [32X operation55[6XReturns:[106X [33X[0;10Ynothing[133X5657[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the58given function [23XF[123X to the category for the basic operation59[10XHorizontalPreCompose[110X. [23XF: (c,d) \mapsto d \ast c[123X.[133X6061[1X5.2-5 HorizontalPostCompose[101X6263[29X[2XHorizontalPostCompose[102X( [3Xd[103X, [3Xc[103X ) [32X operation64[6XReturns:[106X [33X[0;10Ya [23X2[123X-cell[133X6566[33X[0;0YThe arguments are two [23X2[123X-cells [23Xd: \gamma \rightarrow \delta[123X, [23Xc: \alpha67\rightarrow \beta[123X between morphisms [23X\alpha, \beta: a \rightarrow b[123X and68[23X\gamma, \delta: b \rightarrow c[123X. The output is their horizontal composition69[23Xd \ast c: (\gamma \circ \alpha) \rightarrow (\delta \circ \beta)[123X.[133X7071[1X5.2-6 AddHorizontalPostCompose[101X7273[29X[2XAddHorizontalPostCompose[102X( [3XC[103X, [3XF[103X ) [32X operation74[6XReturns:[106X [33X[0;10Ynothing[133X7576[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the77given function [23XF[123X to the category for the basic operation78[10XHorizontalPostCompose[110X. [23XF: (d,c) \mapsto d \ast c[123X.[133X7980[1X5.2-7 VerticalPreCompose[101X8182[29X[2XVerticalPreCompose[102X( [3Xc[103X, [3Xd[103X ) [32X operation83[6XReturns:[106X [33X[0;10Ya [23X2[123X-cell[133X8485[33X[0;0YThe arguments are two [23X2[123X-cells [23Xc: \alpha \rightarrow \beta[123X, [23Xd: \beta86\rightarrow \gamma[123X between morphisms [23X\alpha, \beta, \gamma: a \rightarrow b[123X.87The output is their vertical composition [23Xd \circ c: \alpha \rightarrow88\gamma[123X.[133X8990[1X5.2-8 AddVerticalPreCompose[101X9192[29X[2XAddVerticalPreCompose[102X( [3XC[103X, [3XF[103X ) [32X operation93[6XReturns:[106X [33X[0;10Ynothing[133X9495[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the96given function [23XF[123X to the category for the basic operation [10XVerticalPreCompose[110X.97[23XF: (c,d) \mapsto d \circ c[123X.[133X9899[1X5.2-9 VerticalPostCompose[101X100101[29X[2XVerticalPostCompose[102X( [3Xd[103X, [3Xc[103X ) [32X operation102[6XReturns:[106X [33X[0;10Ya [23X2[123X-cell[133X103104[33X[0;0YThe arguments are two [23X2[123X-cells [23Xd: \beta \rightarrow \gamma[123X, [23Xc: \alpha105\rightarrow \beta[123X between morphisms [23X\alpha, \beta, \gamma: a \rightarrow b[123X.106The output is their vertical composition [23Xd \circ c: \alpha \rightarrow107\gamma[123X.[133X108109[1X5.2-10 AddVerticalPostCompose[101X110111[29X[2XAddVerticalPostCompose[102X( [3XC[103X, [3XF[103X ) [32X operation112[6XReturns:[106X [33X[0;10Ynothing[133X113114[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the115given function [23XF[123X to the category for the basic operation116[10XVerticalPostCompose[110X. [23XF: (d,c) \mapsto d \circ c[123X.[133X117118119[1X5.3 [33X[0;0YWell-Definedness for 2-Cells[133X[101X120121[1X5.3-1 IsWellDefinedForTwoCells[101X122123[29X[2XIsWellDefinedForTwoCells[102X( [3Xc[103X ) [32X operation124[6XReturns:[106X [33X[0;10Ya boolean[133X125126[33X[0;0YThe argument is a [23X2[123X-cell [23Xc[123X. The output is [10Xtrue[110X if [23Xc[123X is well-defined,127otherwise the output is [10Xfalse[110X.[133X128129[1X5.3-2 AddIsWellDefinedForTwoCells[101X130131[29X[2XAddIsWellDefinedForTwoCells[102X( [3XC[103X, [3XF[103X ) [32X operation132[6XReturns:[106X [33X[0;10Ynothing[133X133134[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the135given function [23XF[123X to the category for the basic operation136[10XIsWellDefinedForTwoCells[110X. [23XF: c \mapsto \mathtt{IsWellDefinedForMorphisms}( c137)[123X.[133X138139140141