CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
7 Tensor Product and Internal Hom
3
4
5
7.1 Monoidal Categories
6
7
A 6-tuple ( \mathbf{C}, \otimes, 1, \alpha, \lambda, \rho ) consisting of
8
9
 a category \mathbf{C},
10
11
 a functor \otimes: \mathbf{C} \times \mathbf{C} \rightarrow
12
\mathbf{C},
13
14
 an object 1 \in \mathbf{C},
15
16
 a natural isomorphism \alpha_{a,b,c}: a \otimes (b \otimes c) \cong (a
17
\otimes b) \otimes c,
18
19
 a natural isomorphism \lambda_{a}: 1 \otimes a \cong a,
20
21
 a natural isomorphism \rho_{a}: a \otimes 1 \cong a,
22
23
is called a monoidal category, if
24
25
 for all objects a,b,c,d, the pentagon identity holds: (\alpha_{a,b,c}
26
\otimes \mathrm{id}_d) \circ \alpha_{a,b \otimes c, d} \circ (
27
\mathrm{id}_a \otimes \alpha_{b,c,d} ) = \alpha_{a \otimes b, c, d}
28
\circ \alpha_{a,b,c \otimes d},
29
30
 for all objects a,c, the triangle identity holds: ( \rho_a \otimes
31
\mathrm{id}_c ) \circ \alpha_{a,1,c} = \mathrm{id}_a \otimes
32
\lambda_c.
33
34
The corresponding GAP property is given by IsMonoidalCategory.
35
36
7.1-1 TensorProductOnObjects
37
38
TensorProductOnObjects( a, b )  operation
39
Returns: an object
40
41
The arguments are two objects a, b. The output is the tensor product a
42
\otimes b.
43
44
7.1-2 AddTensorProductOnObjects
45
46
AddTensorProductOnObjects( C, F )  operation
47
Returns: nothing
48
49
The arguments are a category C and a function F. This operations adds the
50
given function F to the category for the basic operation
51
TensorProductOnObjects. F: (a,b) \mapsto a \otimes b.
52
53
7.1-3 TensorProductOnMorphisms
54
55
TensorProductOnMorphisms( alpha, beta )  operation
56
Returns: a morphism in \mathrm{Hom}(a \otimes b, a' \otimes b')
57
58
The arguments are two morphisms \alpha: a \rightarrow a', \beta: b
59
\rightarrow b'. The output is the tensor product \alpha \otimes \beta.
60
61
7.1-4 TensorProductOnMorphismsWithGivenTensorProducts
62
63
TensorProductOnMorphismsWithGivenTensorProducts( s, alpha, beta, r )  operation
64
Returns: a morphism in \mathrm{Hom}(a \otimes b, a' \otimes b')
65
66
The arguments are an object s = a \otimes b, two morphisms \alpha: a
67
\rightarrow a', \beta: b \rightarrow b', and an object r = a' \otimes b'.
68
The output is the tensor product \alpha \otimes \beta.
69
70
7.1-5 AddTensorProductOnMorphismsWithGivenTensorProducts
71
72
AddTensorProductOnMorphismsWithGivenTensorProducts( C, F )  operation
73
Returns: nothing
74
75
The arguments are a category C and a function F. This operations adds the
76
given function F to the category for the basic operation
77
TensorProductOnMorphismsWithGivenTensorProducts. F: ( a \otimes b, \alpha: a
78
\rightarrow a', \beta: b \rightarrow b', a' \otimes b' ) \mapsto \alpha
79
\otimes \beta.
80
81
7.1-6 AssociatorRightToLeft
82
83
AssociatorRightToLeft( a, b, c )  operation
84
Returns: a morphism in \mathrm{Hom}( a \otimes (b \otimes c), (a \otimes b)
85
\otimes c ).
86
87
The arguments are three objects a,b,c. The output is the associator
88
\alpha_{a,(b,c)}: a \otimes (b \otimes c) \rightarrow (a \otimes b) \otimes
89
c.
90
91
7.1-7 AssociatorRightToLeftWithGivenTensorProducts
92
93
AssociatorRightToLeftWithGivenTensorProducts( s, a, b, c, r )  operation
94
Returns: a morphism in \mathrm{Hom}( a \otimes (b \otimes c), (a \otimes b)
95
\otimes c ).
96
97
The arguments are an object s = a \otimes (b \otimes c), three objects
98
a,b,c, and an object r = (a \otimes b) \otimes c. The output is the
99
associator \alpha_{a,(b,c)}: a \otimes (b \otimes c) \rightarrow (a \otimes
100
b) \otimes c.
101
102
7.1-8 AddAssociatorRightToLeftWithGivenTensorProducts
103
104
AddAssociatorRightToLeftWithGivenTensorProducts( C, F )  operation
105
Returns: nothing
106
107
The arguments are a category C and a function F. This operations adds the
108
given function F to the category for the basic operation
109
AssociatorRightToLeftWithGivenTensorProducts. F: ( a \otimes (b \otimes c),
110
a, b, c, (a \otimes b) \otimes c ) \mapsto \alpha_{a,(b,c)}.
111
112
7.1-9 AssociatorLeftToRight
113
114
AssociatorLeftToRight( a, b, c )  operation
115
Returns: a morphism in \mathrm{Hom}( (a \otimes b) \otimes c \rightarrow a
116
\otimes (b \otimes c) ).
117
118
The arguments are three objects a,b,c. The output is the associator
119
\alpha_{(a,b),c}: (a \otimes b) \otimes c \rightarrow a \otimes (b \otimes
120
c).
121
122
7.1-10 AssociatorLeftToRightWithGivenTensorProducts
123
124
AssociatorLeftToRightWithGivenTensorProducts( s, a, b, c, r )  operation
125
Returns: a morphism in \mathrm{Hom}( (a \otimes b) \otimes c \rightarrow a
126
\otimes (b \otimes c) ).
127
128
The arguments are an object s = (a \otimes b) \otimes c, three objects
129
a,b,c, and an object r = a \otimes (b \otimes c). The output is the
130
associator \alpha_{(a,b),c}: (a \otimes b) \otimes c \rightarrow a \otimes
131
(b \otimes c).
132
133
7.1-11 AddAssociatorLeftToRightWithGivenTensorProducts
134
135
AddAssociatorLeftToRightWithGivenTensorProducts( C, F )  operation
136
Returns: nothing
137
138
The arguments are a category C and a function F. This operations adds the
139
given function F to the category for the basic operation
140
AssociatorLeftToRightWithGivenTensorProducts. F: (( a \otimes b ) \otimes c,
141
a, b, c, a \otimes (b \otimes c )) \mapsto \alpha_{(a,b),c}.
142
143
7.1-12 TensorUnit
144
145
TensorUnit( C )  attribute
146
Returns: an object
147
148
The argument is a category \mathbf{C}. The output is the tensor unit 1 of
149
\mathbf{C}.
150
151
7.1-13 AddTensorUnit
152
153
AddTensorUnit( C, F )  operation
154
Returns: nothing
155
156
The arguments are a category C and a function F. This operations adds the
157
given function F to the category for the basic operation TensorUnit. F: ( )
158
\mapsto 1.
159
160
7.1-14 LeftUnitor
161
162
LeftUnitor( a )  attribute
163
Returns: a morphism in \mathrm{Hom}(1 \otimes a, a )
164
165
The argument is an object a. The output is the left unitor \lambda_a: 1
166
\otimes a \rightarrow a.
167
168
7.1-15 LeftUnitorWithGivenTensorProduct
169
170
LeftUnitorWithGivenTensorProduct( a, s )  operation
171
Returns: a morphism in \mathrm{Hom}(1 \otimes a, a )
172
173
The arguments are an object a and an object s = 1 \otimes a. The output is
174
the left unitor \lambda_a: 1 \otimes a \rightarrow a.
175
176
7.1-16 AddLeftUnitorWithGivenTensorProduct
177
178
AddLeftUnitorWithGivenTensorProduct( C, F )  operation
179
Returns: nothing
180
181
The arguments are a category C and a function F. This operations adds the
182
given function F to the category for the basic operation
183
LeftUnitorWithGivenTensorProduct. F: (a, 1 \otimes a) \mapsto \lambda_a.
184
185
7.1-17 LeftUnitorInverse
186
187
LeftUnitorInverse( a )  attribute
188
Returns: a morphism in \mathrm{Hom}(a, 1 \otimes a)
189
190
The argument is an object a. The output is the inverse of the left unitor
191
\lambda_a^{-1}: a \rightarrow 1 \otimes a.
192
193
7.1-18 LeftUnitorInverseWithGivenTensorProduct
194
195
LeftUnitorInverseWithGivenTensorProduct( a, r )  operation
196
Returns: a morphism in \mathrm{Hom}(a, 1 \otimes a)
197
198
The argument is an object a and an object r = 1 \otimes a. The output is the
199
inverse of the left unitor \lambda_a^{-1}: a \rightarrow 1 \otimes a.
200
201
7.1-19 AddLeftUnitorInverseWithGivenTensorProduct
202
203
AddLeftUnitorInverseWithGivenTensorProduct( C, F )  operation
204
Returns: nothing
205
206
The arguments are a category C and a function F. This operations adds the
207
given function F to the category for the basic operation
208
LeftUnitorInverseWithGivenTensorProduct. F: (a, 1 \otimes a) \mapsto
209
\lambda_a^{-1}.
210
211
7.1-20 RightUnitor
212
213
RightUnitor( a )  attribute
214
Returns: a morphism in \mathrm{Hom}(a \otimes 1, a )
215
216
The argument is an object a. The output is the right unitor \rho_a: a
217
\otimes 1 \rightarrow a.
218
219
7.1-21 RightUnitorWithGivenTensorProduct
220
221
RightUnitorWithGivenTensorProduct( a, s )  operation
222
Returns: a morphism in \mathrm{Hom}(a \otimes 1, a )
223
224
The arguments are an object a and an object s = a \otimes 1. The output is
225
the right unitor \rho_a: a \otimes 1 \rightarrow a.
226
227
7.1-22 AddRightUnitorWithGivenTensorProduct
228
229
AddRightUnitorWithGivenTensorProduct( C, F )  operation
230
Returns: nothing
231
232
The arguments are a category C and a function F. This operations adds the
233
given function F to the category for the basic operation
234
RightUnitorWithGivenTensorProduct. F: (a, a \otimes 1) \mapsto \rho_a.
235
236
7.1-23 RightUnitorInverse
237
238
RightUnitorInverse( a )  attribute
239
Returns: a morphism in \mathrm{Hom}( a, a \otimes 1 )
240
241
The argument is an object a. The output is the inverse of the right unitor
242
\rho_a^{-1}: a \rightarrow a \otimes 1.
243
244
7.1-24 RightUnitorInverseWithGivenTensorProduct
245
246
RightUnitorInverseWithGivenTensorProduct( a, r )  operation
247
Returns: a morphism in \mathrm{Hom}( a, a \otimes 1 )
248
249
The arguments are an object a and an object r = a \otimes 1. The output is
250
the inverse of the right unitor \rho_a^{-1}: a \rightarrow a \otimes 1.
251
252
7.1-25 AddRightUnitorInverseWithGivenTensorProduct
253
254
AddRightUnitorInverseWithGivenTensorProduct( C, F )  operation
255
Returns: nothing
256
257
The arguments are a category C and a function F. This operations adds the
258
given function F to the category for the basic operation
259
RightUnitorInverseWithGivenTensorProduct. F: (a, a \otimes 1) \mapsto
260
\rho_a^{-1}.
261
262
7.1-26 LeftDistributivityExpanding
263
264
LeftDistributivityExpanding( a, L )  operation
265
Returns: a morphism in \mathrm{Hom}( a \otimes (b_1 \oplus \dots \oplus
266
b_n), (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n) )
267
268
The arguments are an object a and a list of objects L = (b_1, \dots, b_n).
269
The output is the left distributivity morphism a \otimes (b_1 \oplus \dots
270
\oplus b_n) \rightarrow (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n).
271
272
7.1-27 LeftDistributivityExpandingWithGivenObjects
273
274
LeftDistributivityExpandingWithGivenObjects( s, a, L, r )  operation
275
Returns: a morphism in \mathrm{Hom}( s, r )
276
277
The arguments are an object s = a \otimes (b_1 \oplus \dots \oplus b_n), an
278
object a, a list of objects L = (b_1, \dots, b_n), and an object r = (a
279
\otimes b_1) \oplus \dots \oplus (a \otimes b_n). The output is the left
280
distributivity morphism s \rightarrow r.
281
282
7.1-28 AddLeftDistributivityExpandingWithGivenObjects
283
284
AddLeftDistributivityExpandingWithGivenObjects( C, F )  operation
285
Returns: nothing
286
287
The arguments are a category C and a function F. This operations adds the
288
given function F to the category for the basic operation
289
LeftDistributivityExpandingWithGivenObjects. F: (a \otimes (b_1 \oplus \dots
290
\oplus b_n), a, L, (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n))
291
\mapsto \mathrm{LeftDistributivityExpandingWithGivenObjects}(a,L).
292
293
7.1-29 LeftDistributivityFactoring
294
295
LeftDistributivityFactoring( a, L )  operation
296
Returns: a morphism in \mathrm{Hom}( (a \otimes b_1) \oplus \dots \oplus (a
297
\otimes b_n), a \otimes (b_1 \oplus \dots \oplus b_n) )
298
299
The arguments are an object a and a list of objects L = (b_1, \dots, b_n).
300
The output is the left distributivity morphism (a \otimes b_1) \oplus \dots
301
\oplus (a \otimes b_n) \rightarrow a \otimes (b_1 \oplus \dots \oplus b_n).
302
303
7.1-30 LeftDistributivityFactoringWithGivenObjects
304
305
LeftDistributivityFactoringWithGivenObjects( s, a, L, r )  operation
306
Returns: a morphism in \mathrm{Hom}( s, r )
307
308
The arguments are an object s = (a \otimes b_1) \oplus \dots \oplus (a
309
\otimes b_n), an object a, a list of objects L = (b_1, \dots, b_n), and an
310
object r = a \otimes (b_1 \oplus \dots \oplus b_n). The output is the left
311
distributivity morphism s \rightarrow r.
312
313
7.1-31 AddLeftDistributivityFactoringWithGivenObjects
314
315
AddLeftDistributivityFactoringWithGivenObjects( C, F )  operation
316
Returns: nothing
317
318
The arguments are a category C and a function F. This operations adds the
319
given function F to the category for the basic operation
320
LeftDistributivityFactoringWithGivenObjects. F: ((a \otimes b_1) \oplus
321
\dots \oplus (a \otimes b_n), a, L, a \otimes (b_1 \oplus \dots \oplus b_n))
322
\mapsto \mathrm{LeftDistributivityFactoringWithGivenObjects}(a,L).
323
324
7.1-32 RightDistributivityExpanding
325
326
RightDistributivityExpanding( L, a )  operation
327
Returns: a morphism in \mathrm{Hom}( (b_1 \oplus \dots \oplus b_n) \otimes
328
a, (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a) )
329
330
The arguments are a list of objects L = (b_1, \dots, b_n) and an object a.
331
The output is the right distributivity morphism (b_1 \oplus \dots \oplus
332
b_n) \otimes a \rightarrow (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes
333
a).
334
335
7.1-33 RightDistributivityExpandingWithGivenObjects
336
337
RightDistributivityExpandingWithGivenObjects( s, L, a, r )  operation
338
Returns: a morphism in \mathrm{Hom}( s, r )
339
340
The arguments are an object s = (b_1 \oplus \dots \oplus b_n) \otimes a, a
341
list of objects L = (b_1, \dots, b_n), an object a, and an object r = (b_1
342
\otimes a) \oplus \dots \oplus (b_n \otimes a). The output is the right
343
distributivity morphism s \rightarrow r.
344
345
7.1-34 AddRightDistributivityExpandingWithGivenObjects
346
347
AddRightDistributivityExpandingWithGivenObjects( C, F )  operation
348
Returns: nothing
349
350
The arguments are a category C and a function F. This operations adds the
351
given function F to the category for the basic operation
352
RightDistributivityExpandingWithGivenObjects. F: ((b_1 \oplus \dots \oplus
353
b_n) \otimes a, L, a, (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a))
354
\mapsto \mathrm{RightDistributivityExpandingWithGivenObjects}(L,a).
355
356
7.1-35 RightDistributivityFactoring
357
358
RightDistributivityFactoring( L, a )  operation
359
Returns: a morphism in \mathrm{Hom}( (b_1 \otimes a) \oplus \dots \oplus
360
(b_n \otimes a), (b_1 \oplus \dots \oplus b_n) \otimes a)
361
362
The arguments are a list of objects L = (b_1, \dots, b_n) and an object a.
363
The output is the right distributivity morphism (b_1 \otimes a) \oplus \dots
364
\oplus (b_n \otimes a) \rightarrow (b_1 \oplus \dots \oplus b_n) \otimes a .
365
366
7.1-36 RightDistributivityFactoringWithGivenObjects
367
368
RightDistributivityFactoringWithGivenObjects( s, L, a, r )  operation
369
Returns: a morphism in \mathrm{Hom}( s, r )
370
371
The arguments are an object s = (b_1 \otimes a) \oplus \dots \oplus (b_n
372
\otimes a), a list of objects L = (b_1, \dots, b_n), an object a, and an
373
object r = (b_1 \oplus \dots \oplus b_n) \otimes a. The output is the right
374
distributivity morphism s \rightarrow r.
375
376
7.1-37 AddRightDistributivityFactoringWithGivenObjects
377
378
AddRightDistributivityFactoringWithGivenObjects( C, F )  operation
379
Returns: nothing
380
381
The arguments are a category C and a function F. This operations adds the
382
given function F to the category for the basic operation
383
RightDistributivityFactoringWithGivenObjects. F: ((b_1 \otimes a) \oplus
384
\dots \oplus (b_n \otimes a), L, a, (b_1 \oplus \dots \oplus b_n) \otimes a)
385
\mapsto \mathrm{RightDistributivityFactoringWithGivenObjects}(L,a).
386
387
388
7.2 Braided Monoidal Categories
389
390
A monoidal category \mathbf{C} equipped with a natural isomorphism B_{a,b}:
391
a \otimes b \cong b \otimes a is called a braided monoidal category if
392
393
 \lambda_a \circ B_{a,1} = \rho_a,
394
395
 (B_{c,a} \otimes \mathrm{id}_b) \circ \alpha_{c,a,b} \circ B_{a
396
\otimes b,c} = \alpha_{a,c,b} \circ ( \mathrm{id}_a \otimes B_{b,c})
397
\circ \alpha^{-1}_{a,b,c},
398
399
 ( \mathrm{id}_b \otimes B_{c,a} ) \circ \alpha^{-1}_{b,c,a} \circ
400
B_{a,b \otimes c} = \alpha^{-1}_{b,a,c} \circ (B_{a,b} \otimes
401
\mathrm{id}_c) \circ \alpha_{a,b,c}.
402
403
The corresponding GAP property is given by IsBraidedMonoidalCategory.
404
405
7.2-1 Braiding
406
407
Braiding( a, b )  operation
408
Returns: a morphism in \mathrm{Hom}( a \otimes b, b \otimes a ).
409
410
The arguments are two objects a,b. The output is the braiding  B_{a,b}: a
411
\otimes b \rightarrow b \otimes a.
412
413
7.2-2 BraidingWithGivenTensorProducts
414
415
BraidingWithGivenTensorProducts( s, a, b, r )  operation
416
Returns: a morphism in \mathrm{Hom}( a \otimes b, b \otimes a ).
417
418
The arguments are an object s = a \otimes b, two objects a,b, and an object
419
r = b \otimes a. The output is the braiding  B_{a,b}: a \otimes b
420
\rightarrow b \otimes a.
421
422
7.2-3 AddBraidingWithGivenTensorProducts
423
424
AddBraidingWithGivenTensorProducts( C, F )  operation
425
Returns: nothing
426
427
The arguments are a category C and a function F. This operations adds the
428
given function F to the category for the basic operation
429
BraidingWithGivenTensorProducts. F: (a \otimes b, a, b, b \otimes a)
430
\rightarrow B_{a,b}.
431
432
7.2-4 BraidingInverse
433
434
BraidingInverse( a, b )  operation
435
Returns: a morphism in \mathrm{Hom}( b \otimes a, a \otimes b ).
436
437
The arguments are two objects a,b. The output is the inverse of the braiding
438
 B_{a,b}^{-1}: b \otimes a \rightarrow a \otimes b.
439
440
7.2-5 BraidingInverseWithGivenTensorProducts
441
442
BraidingInverseWithGivenTensorProducts( s, a, b, r )  operation
443
Returns: a morphism in \mathrm{Hom}( b \otimes a, a \otimes b ).
444
445
The arguments are an object s = b \otimes a, two objects a,b, and an object
446
r = a \otimes b. The output is the braiding  B_{a,b}^{-1}: b \otimes a
447
\rightarrow a \otimes b.
448
449
7.2-6 AddBraidingInverseWithGivenTensorProducts
450
451
AddBraidingInverseWithGivenTensorProducts( C, F )  operation
452
Returns: nothing
453
454
The arguments are a category C and a function F. This operations adds the
455
given function F to the category for the basic operation
456
BraidingInverseWithGivenTensorProducts. F: (b \otimes a, a, b, a \otimes b)
457
\rightarrow B_{a,b}^{-1}.
458
459
460
7.3 Symmetric Monoidal Categories
461
462
A braided monoidal category \mathbf{C} is called symmetric monoidal category
463
if B_{a,b}^{-1} = B_{b,a}. The corresponding GAP property is given by
464
IsSymmetricMonoidalCategory.
465
466
467
7.4 Symmetric Closed Monoidal Categories
468
469
A symmetric monoidal category \mathbf{C} which has for each functor -
470
\otimes b: \mathbf{C} \rightarrow \mathbf{C} a right adjoint (denoted by
471
\underline{\mathrm{Hom}}(b,-)) is called a symmetric closed monoidal
472
category. The corresponding GAP property is given by
473
IsSymmetricClosedMonoidalCategory.
474
475
7.4-1 InternalHomOnObjects
476
477
InternalHomOnObjects( a, b )  operation
478
Returns: an object
479
480
The arguments are two objects a,b. The output is the internal hom object
481
\underline{\mathrm{Hom}}(a,b).
482
483
7.4-2 AddInternalHomOnObjects
484
485
AddInternalHomOnObjects( C, F )  operation
486
Returns: nothing
487
488
The arguments are a category C and a function F. This operations adds the
489
given function F to the category for the basic operation
490
InternalHomOnObjects. F: (a,b) \mapsto \underline{\mathrm{Hom}}(a,b).
491
492
7.4-3 InternalHomOnMorphisms
493
494
InternalHomOnMorphisms( alpha, beta )  operation
495
Returns: a morphism in \mathrm{Hom}( \underline{\mathrm{Hom}}(a',b),
496
\underline{\mathrm{Hom}}(a,b') )
497
498
The arguments are two morphisms \alpha: a \rightarrow a', \beta: b
499
\rightarrow b'. The output is the internal hom morphism
500
\underline{\mathrm{Hom}}(\alpha,\beta): \underline{\mathrm{Hom}}(a',b)
501
\rightarrow \underline{\mathrm{Hom}}(a,b').
502
503
7.4-4 InternalHomOnMorphismsWithGivenInternalHoms
504
505
InternalHomOnMorphismsWithGivenInternalHoms( s, alpha, beta, r )  operation
506
Returns: a morphism in \mathrm{Hom}( \underline{\mathrm{Hom}}(a',b),
507
\underline{\mathrm{Hom}}(a,b') )
508
509
The arguments are an object s = \underline{\mathrm{Hom}}(a',b), two
510
morphisms \alpha: a \rightarrow a', \beta: b \rightarrow b', and an object r
511
= \underline{\mathrm{Hom}}(a,b'). The output is the internal hom morphism
512
\underline{\mathrm{Hom}}(\alpha,\beta): \underline{\mathrm{Hom}}(a',b)
513
\rightarrow \underline{\mathrm{Hom}}(a,b').
514
515
7.4-5 AddInternalHomOnMorphismsWithGivenInternalHoms
516
517
AddInternalHomOnMorphismsWithGivenInternalHoms( C, F )  operation
518
Returns: nothing
519
520
The arguments are a category C and a function F. This operations adds the
521
given function F to the category for the basic operation
522
InternalHomOnMorphismsWithGivenInternalHoms. F:
523
(\underline{\mathrm{Hom}}(a',b), \alpha: a \rightarrow a', \beta: b
524
\rightarrow b', \underline{\mathrm{Hom}}(a,b') ) \mapsto
525
\underline{\mathrm{Hom}}(\alpha,\beta).
526
527
7.4-6 EvaluationMorphism
528
529
EvaluationMorphism( a, b )  operation
530
Returns: a morphism in \mathrm{Hom}( \mathrm{\underline{Hom}}(a,b) \otimes
531
a, b ).
532
533
The arguments are two objects a, b. The output is the evaluation morphism
534
\mathrm{ev}_{a,b}: \mathrm{\underline{Hom}}(a,b) \otimes a \rightarrow b,
535
i.e., the counit of the tensor hom adjunction.
536
537
7.4-7 EvaluationMorphismWithGivenSource
538
539
EvaluationMorphismWithGivenSource( a, b, s )  operation
540
Returns: a morphism in \mathrm{Hom}( \mathrm{\underline{Hom}}(a,b) \otimes
541
a, b ).
542
543
The arguments are two objects a,b and an object s =
544
\mathrm{\underline{Hom}}(a,b) \otimes a. The output is the evaluation
545
morphism \mathrm{ev}_{a,b}: \mathrm{\underline{Hom}}(a,b) \otimes a
546
\rightarrow b, i.e., the counit of the tensor hom adjunction.
547
548
7.4-8 AddEvaluationMorphismWithGivenSource
549
550
AddEvaluationMorphismWithGivenSource( C, F )  operation
551
Returns: nothing
552
553
The arguments are a category C and a function F. This operations adds the
554
given function F to the category for the basic operation
555
EvaluationMorphismWithGivenSource. F: (a, b, \mathrm{\underline{Hom}}(a,b)
556
\otimes a) \mapsto \mathrm{ev}_{a,b}.
557
558
7.4-9 CoevaluationMorphism
559
560
CoevaluationMorphism( a, b )  operation
561
Returns: a morphism in \mathrm{Hom}( a, \mathrm{\underline{Hom}}(b, a
562
\otimes b) ).
563
564
The arguments are two objects a,b. The output is the coevaluation morphism
565
\mathrm{coev}_{a,b}: a \rightarrow \mathrm{\underline{Hom}(b, a \otimes b)},
566
i.e., the unit of the tensor hom adjunction.
567
568
7.4-10 CoevaluationMorphismWithGivenRange
569
570
CoevaluationMorphismWithGivenRange( a, b, r )  operation
571
Returns: a morphism in \mathrm{Hom}( a, \mathrm{\underline{Hom}}(b, a
572
\otimes b) ).
573
574
The arguments are two objects a,b and an object r =
575
\mathrm{\underline{Hom}(b, a \otimes b)}. The output is the coevaluation
576
morphism \mathrm{coev}_{a,b}: a \rightarrow \mathrm{\underline{Hom}(b, a
577
\otimes b)}, i.e., the unit of the tensor hom adjunction.
578
579
7.4-11 AddCoevaluationMorphismWithGivenRange
580
581
AddCoevaluationMorphismWithGivenRange( C, F )  operation
582
Returns: nothing
583
584
The arguments are a category C and a function F. This operations adds the
585
given function F to the category for the basic operation
586
CoevaluationMorphismWithGivenRange. F: (a, b, \mathrm{\underline{Hom}}(b, a
587
\otimes b)) \mapsto \mathrm{coev}_{a,b}.
588
589
7.4-12 TensorProductToInternalHomAdjunctionMap
590
591
TensorProductToInternalHomAdjunctionMap( a, b, f )  operation
592
Returns: a morphism in \mathrm{Hom}( a, \mathrm{\underline{Hom}}(b,c) ).
593
594
The arguments are objects a,b and a morphism f: a \otimes b \rightarrow c.
595
The output is a morphism g: a \rightarrow \mathrm{\underline{Hom}}(b,c)
596
corresponding to f under the tensor hom adjunction.
597
598
7.4-13 AddTensorProductToInternalHomAdjunctionMap
599
600
AddTensorProductToInternalHomAdjunctionMap( C, F )  operation
601
Returns: nothing
602
603
The arguments are a category C and a function F. This operations adds the
604
given function F to the category for the basic operation
605
TensorProductToInternalHomAdjunctionMap. F: (a, b, f: a \otimes b
606
\rightarrow c) \mapsto ( g: a \rightarrow \mathrm{\underline{Hom}}(b,c) ).
607
608
7.4-14 InternalHomToTensorProductAdjunctionMap
609
610
InternalHomToTensorProductAdjunctionMap( b, c, g )  operation
611
Returns: a morphism in \mathrm{Hom}(a \otimes b, c).
612
613
The arguments are objects b,c and a morphism g: a \rightarrow
614
\mathrm{\underline{Hom}}(b,c). The output is a morphism f: a \otimes b
615
\rightarrow c corresponding to g under the tensor hom adjunction.
616
617
7.4-15 AddInternalHomToTensorProductAdjunctionMap
618
619
AddInternalHomToTensorProductAdjunctionMap( C, F )  operation
620
Returns: nothing
621
622
The arguments are a category C and a function F. This operations adds the
623
given function F to the category for the basic operation
624
InternalHomToTensorProductAdjunctionMap. F: (b, c, g: a \rightarrow
625
\mathrm{\underline{Hom}}(b,c)) \mapsto ( g: a \otimes b \rightarrow c ).
626
627
7.4-16 MonoidalPreComposeMorphism
628
629
MonoidalPreComposeMorphism( a, b, c )  operation
630
Returns: a morphism in \mathrm{Hom}( \mathrm{\underline{Hom}}(a,b) \otimes
631
\mathrm{\underline{Hom}}(b,c), \mathrm{\underline{Hom}}(a,c) ).
632
633
The arguments are three objects a,b,c. The output is the precomposition
634
morphism \mathrm{MonoidalPreComposeMorphismWithGivenObjects}_{a,b,c}:
635
\mathrm{\underline{Hom}}(a,b) \otimes \mathrm{\underline{Hom}}(b,c)
636
\rightarrow \mathrm{\underline{Hom}}(a,c).
637
638
7.4-17 MonoidalPreComposeMorphismWithGivenObjects
639
640
MonoidalPreComposeMorphismWithGivenObjects( s, a, b, c, r )  operation
641
Returns: a morphism in \mathrm{Hom}( \mathrm{\underline{Hom}}(a,b) \otimes
642
\mathrm{\underline{Hom}}(b,c), \mathrm{\underline{Hom}}(a,c) ).
643
644
The arguments are an object s = \mathrm{\underline{Hom}}(a,b) \otimes
645
\mathrm{\underline{Hom}}(b,c), three objects a,b,c, and an object r =
646
\mathrm{\underline{Hom}}(a,c). The output is the precomposition morphism
647
\mathrm{MonoidalPreComposeMorphismWithGivenObjects}_{a,b,c}:
648
\mathrm{\underline{Hom}}(a,b) \otimes \mathrm{\underline{Hom}}(b,c)
649
\rightarrow \mathrm{\underline{Hom}}(a,c).
650
651
7.4-18 AddMonoidalPreComposeMorphismWithGivenObjects
652
653
AddMonoidalPreComposeMorphismWithGivenObjects( C, F )  operation
654
Returns: nothing
655
656
The arguments are a category C and a function F. This operations adds the
657
given function F to the category for the basic operation
658
MonoidalPreComposeMorphismWithGivenObjects. F:
659
(\mathrm{\underline{Hom}}(a,b) \otimes
660
\mathrm{\underline{Hom}}(b,c),a,b,c,\mathrm{\underline{Hom}}(a,c)) \mapsto
661
\mathrm{MonoidalPreComposeMorphismWithGivenObjects}_{a,b,c}.
662
663
7.4-19 MonoidalPostComposeMorphism
664
665
MonoidalPostComposeMorphism( a, b, c )  operation
666
Returns: a morphism in \mathrm{Hom}( \mathrm{\underline{Hom}}(b,c) \otimes
667
\mathrm{\underline{Hom}}(a,b), \mathrm{\underline{Hom}}(a,c) ).
668
669
The arguments are three objects a,b,c. The output is the postcomposition
670
morphism \mathrm{MonoidalPostComposeMorphismWithGivenObjects}_{a,b,c}:
671
\mathrm{\underline{Hom}}(b,c) \otimes \mathrm{\underline{Hom}}(a,b)
672
\rightarrow \mathrm{\underline{Hom}}(a,c).
673
674
7.4-20 MonoidalPostComposeMorphismWithGivenObjects
675
676
MonoidalPostComposeMorphismWithGivenObjects( s, a, b, c, r )  operation
677
Returns: a morphism in \mathrm{Hom}( \mathrm{\underline{Hom}}(b,c) \otimes
678
\mathrm{\underline{Hom}}(a,b), \mathrm{\underline{Hom}}(a,c) ).
679
680
The arguments are an object s = \mathrm{\underline{Hom}}(b,c) \otimes
681
\mathrm{\underline{Hom}}(a,b), three objects a,b,c, and an object r =
682
\mathrm{\underline{Hom}}(a,c). The output is the postcomposition morphism
683
\mathrm{MonoidalPostComposeMorphismWithGivenObjects}_{a,b,c}:
684
\mathrm{\underline{Hom}}(b,c) \otimes \mathrm{\underline{Hom}}(a,b)
685
\rightarrow \mathrm{\underline{Hom}}(a,c).
686
687
7.4-21 AddMonoidalPostComposeMorphismWithGivenObjects
688
689
AddMonoidalPostComposeMorphismWithGivenObjects( C, F )  operation
690
Returns: nothing
691
692
The arguments are a category C and a function F. This operations adds the
693
given function F to the category for the basic operation
694
MonoidalPostComposeMorphismWithGivenObjects. F:
695
(\mathrm{\underline{Hom}}(b,c) \otimes
696
\mathrm{\underline{Hom}}(a,b),a,b,c,\mathrm{\underline{Hom}}(a,c)) \mapsto
697
\mathrm{MonoidalPostComposeMorphismWithGivenObjects}_{a,b,c}.
698
699
7.4-22 DualOnObjects
700
701
DualOnObjects( a )  attribute
702
Returns: an object
703
704
The argument is an object a. The output is its dual object a^{\vee}.
705
706
7.4-23 AddDualOnObjects
707
708
AddDualOnObjects( C, F )  operation
709
Returns: nothing
710
711
The arguments are a category C and a function F. This operations adds the
712
given function F to the category for the basic operation DualOnObjects. F: a
713
\mapsto a^{\vee}.
714
715
7.4-24 DualOnMorphisms
716
717
DualOnMorphisms( alpha )  attribute
718
Returns: a morphism in \mathrm{Hom}( b^{\vee}, a^{\vee} ).
719
720
The argument is a morphism \alpha: a \rightarrow b. The output is its dual
721
morphism \alpha^{\vee}: b^{\vee} \rightarrow a^{\vee}.
722
723
7.4-25 DualOnMorphismsWithGivenDuals
724
725
DualOnMorphismsWithGivenDuals( s, alpha, r )  operation
726
Returns: a morphism in \mathrm{Hom}( b^{\vee}, a^{\vee} ).
727
728
The argument is an object s = b^{\vee}, a morphism \alpha: a \rightarrow b,
729
and an object r = a^{\vee}. The output is the dual morphism \alpha^{\vee}:
730
b^{\vee} \rightarrow a^{\vee}.
731
732
7.4-26 AddDualOnMorphismsWithGivenDuals
733
734
AddDualOnMorphismsWithGivenDuals( C, F )  operation
735
Returns: nothing
736
737
The arguments are a category C and a function F. This operations adds the
738
given function F to the category for the basic operation
739
DualOnMorphismsWithGivenDuals. F: (b^{\vee},\alpha,a^{\vee}) \mapsto
740
\alpha^{\vee}.
741
742
7.4-27 EvaluationForDual
743
744
EvaluationForDual( a )  attribute
745
Returns: a morphism in \mathrm{Hom}( a^{\vee} \otimes a, 1 ).
746
747
The argument is an object a. The output is the evaluation morphism
748
\mathrm{ev}_{a}: a^{\vee} \otimes a \rightarrow 1.
749
750
7.4-28 EvaluationForDualWithGivenTensorProduct
751
752
EvaluationForDualWithGivenTensorProduct( s, a, r )  operation
753
Returns: a morphism in \mathrm{Hom}( a^{\vee} \otimes a, 1 ).
754
755
The arguments are an object s = a^{\vee} \otimes a, an object a, and an
756
object r = 1. The output is the evaluation morphism \mathrm{ev}_{a}:
757
a^{\vee} \otimes a \rightarrow 1.
758
759
7.4-29 AddEvaluationForDualWithGivenTensorProduct
760
761
AddEvaluationForDualWithGivenTensorProduct( C, F )  operation
762
Returns: nothing
763
764
The arguments are a category C and a function F. This operations adds the
765
given function F to the category for the basic operation
766
EvaluationForDualWithGivenTensorProduct. F: (a^{\vee} \otimes a, a, 1)
767
\mapsto \mathrm{ev}_{a}.
768
769
7.4-30 CoevaluationForDual
770
771
CoevaluationForDual( a )  attribute
772
Returns: a morphism in \mathrm{Hom}(1,a \otimes a^{\vee}).
773
774
The argument is an object a. The output is the coevaluation morphism
775
\mathrm{coev}_{a}:1 \rightarrow a \otimes a^{\vee}.
776
777
7.4-31 CoevaluationForDualWithGivenTensorProduct
778
779
CoevaluationForDualWithGivenTensorProduct( s, a, r )  operation
780
Returns: a morphism in \mathrm{Hom}(1,a \otimes a^{\vee}).
781
782
The arguments are an object s = 1, an object a, and an object r = a \otimes
783
a^{\vee}. The output is the coevaluation morphism \mathrm{coev}_{a}:1
784
\rightarrow a \otimes a^{\vee}.
785
786
7.4-32 AddCoevaluationForDualWithGivenTensorProduct
787
788
AddCoevaluationForDualWithGivenTensorProduct( C, F )  operation
789
Returns: nothing
790
791
The arguments are a category C and a function F. This operations adds the
792
given function F to the category for the basic operation
793
CoevaluationForDualWithGivenTensorProduct. F: (1, a, a \otimes a^{\vee})
794
\mapsto \mathrm{coev}_{a}.
795
796
7.4-33 MorphismToBidual
797
798
MorphismToBidual( a )  attribute
799
Returns: a morphism in \mathrm{Hom}(a, (a^{\vee})^{\vee}).
800
801
The argument is an object a. The output is the morphism to the bidual a
802
\rightarrow (a^{\vee})^{\vee}.
803
804
7.4-34 MorphismToBidualWithGivenBidual
805
806
MorphismToBidualWithGivenBidual( a, r )  operation
807
Returns: a morphism in \mathrm{Hom}(a, (a^{\vee})^{\vee}).
808
809
The arguments are an object a, and an object r = (a^{\vee})^{\vee}. The
810
output is the morphism to the bidual a \rightarrow (a^{\vee})^{\vee}.
811
812
7.4-35 AddMorphismToBidualWithGivenBidual
813
814
AddMorphismToBidualWithGivenBidual( C, F )  operation
815
Returns: nothing
816
817
The arguments are a category C and a function F. This operations adds the
818
given function F to the category for the basic operation
819
MorphismToBidualWithGivenBidual. F: (a, (a^{\vee})^{\vee}) \mapsto (a
820
\rightarrow (a^{\vee})^{\vee}).
821
822
7.4-36 TensorProductInternalHomCompatibilityMorphism
823
824
TensorProductInternalHomCompatibilityMorphism( a, a', b, b' )  operation
825
Returns: a morphism in \mathrm{Hom}( \mathrm{\underline{Hom}}(a,a') \otimes
826
\mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes
827
b,a' \otimes b')).
828
829
The arguments are four objects a, a', b, b'. The output is the natural
830
morphism
831
\mathrm{TensorProductInternalHomCompatibilityMorphismWithGivenObjects}_{a,a',b,b'}:
832
\mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b')
833
\rightarrow \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b').
834
835
7.4-37 TensorProductInternalHomCompatibilityMorphismWithGivenObjects
836
837
TensorProductInternalHomCompatibilityMorphismWithGivenObjects( a, a', b, b', L )  operation
838
Returns: a morphism in \mathrm{Hom}( \mathrm{\underline{Hom}}(a,a') \otimes
839
\mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes
840
b,a' \otimes b')).
841
842
The arguments are four objects a, a', b, b', and a list L = [
843
\mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b'),
844
\mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') ]. The output is the
845
natural morphism
846
\mathrm{TensorProductInternalHomCompatibilityMorphismWithGivenObjects}_{a,a',b,b'}:
847
\mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b')
848
\rightarrow \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b').
849
850
7.4-38 AddTensorProductInternalHomCompatibilityMorphismWithGivenObjects
851
852
AddTensorProductInternalHomCompatibilityMorphismWithGivenObjects( C, F )  operation
853
Returns: nothing
854
855
The arguments are a category C and a function F. This operations adds the
856
given function F to the category for the basic operation
857
TensorProductInternalHomCompatibilityMorphismWithGivenObjects. F: (
858
a,a',b,b', [ \mathrm{\underline{Hom}}(a,a') \otimes
859
\mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes b,a'
860
\otimes b') ]) \mapsto
861
\mathrm{TensorProductInternalHomCompatibilityMorphismWithGivenObjects}_{a,a',b,b'}
862
.
863
864
7.4-39 TensorProductDualityCompatibilityMorphism
865
866
TensorProductDualityCompatibilityMorphism( a, b )  operation
867
Returns: a morphism in \mathrm{Hom}( a^{\vee} \otimes b^{\vee}, (a \otimes
868
b)^{\vee} ).
869
870
The arguments are two objects a,b. The output is the natural morphism
871
\mathrm{TensorProductDualityCompatibilityMorphismWithGivenObjects}: a^{\vee}
872
\otimes b^{\vee} \rightarrow (a \otimes b)^{\vee}.
873
874
7.4-40 TensorProductDualityCompatibilityMorphismWithGivenObjects
875
876
TensorProductDualityCompatibilityMorphismWithGivenObjects( s, a, b, r )  operation
877
Returns: a morphism in \mathrm{Hom}( a^{\vee} \otimes b^{\vee}, (a \otimes
878
b)^{\vee} ).
879
880
The arguments are an object s = a^{\vee} \otimes b^{\vee}, two objects a,b,
881
and an object r = (a \otimes b)^{\vee}. The output is the natural morphism
882
\mathrm{TensorProductDualityCompatibilityMorphismWithGivenObjects}_{a,b}:
883
a^{\vee} \otimes b^{\vee} \rightarrow (a \otimes b)^{\vee}.
884
885
7.4-41 AddTensorProductDualityCompatibilityMorphismWithGivenObjects
886
887
AddTensorProductDualityCompatibilityMorphismWithGivenObjects( C, F )  operation
888
Returns: nothing
889
890
The arguments are a category C and a function F. This operations adds the
891
given function F to the category for the basic operation
892
TensorProductDualityCompatibilityMorphismWithGivenObjects. F: ( a^{\vee}
893
\otimes b^{\vee}, a, b, (a \otimes b)^{\vee} ) \mapsto
894
\mathrm{TensorProductDualityCompatibilityMorphismWithGivenObjects}_{a,b}.
895
896
7.4-42 MorphismFromTensorProductToInternalHom
897
898
MorphismFromTensorProductToInternalHom( a, b )  operation
899
Returns: a morphism in \mathrm{Hom}( a^{\vee} \otimes b,
900
\mathrm{\underline{Hom}}(a,b) ).
901
902
The arguments are two objects a,b. The output is the natural morphism
903
\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}_{a,b}:
904
a^{\vee} \otimes b \rightarrow \mathrm{\underline{Hom}}(a,b).
905
906
7.4-43 MorphismFromTensorProductToInternalHomWithGivenObjects
907
908
MorphismFromTensorProductToInternalHomWithGivenObjects( s, a, b, r )  operation
909
Returns: a morphism in \mathrm{Hom}( a^{\vee} \otimes b,
910
\mathrm{\underline{Hom}}(a,b) ).
911
912
The arguments are an object s = a^{\vee} \otimes b, two objects a,b, and an
913
object r = \mathrm{\underline{Hom}}(a,b). The output is the natural morphism
914
\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}_{a,b}:
915
a^{\vee} \otimes b \rightarrow \mathrm{\underline{Hom}}(a,b).
916
917
7.4-44 AddMorphismFromTensorProductToInternalHomWithGivenObjects
918
919
AddMorphismFromTensorProductToInternalHomWithGivenObjects( C, F )  operation
920
Returns: nothing
921
922
The arguments are a category C and a function F. This operations adds the
923
given function F to the category for the basic operation
924
MorphismFromTensorProductToInternalHomWithGivenObjects. F: ( a^{\vee}
925
\otimes b, a, b, \mathrm{\underline{Hom}}(a,b) ) \mapsto
926
\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}_{a,b}.
927
928
7.4-45 IsomorphismFromTensorProductToInternalHom
929
930
IsomorphismFromTensorProductToInternalHom( a, b )  operation
931
Returns: a morphism in \mathrm{Hom}( a^{\vee} \otimes b,
932
\mathrm{\underline{Hom}}(a,b) ).
933
934
The arguments are two objects a,b. The output is the natural morphism
935
\mathrm{IsomorphismFromTensorProductToInternalHom}_{a,b}: a^{\vee} \otimes b
936
\rightarrow \mathrm{\underline{Hom}}(a,b).
937
938
7.4-46 AddIsomorphismFromTensorProductToInternalHom
939
940
AddIsomorphismFromTensorProductToInternalHom( C, F )  operation
941
Returns: nothing
942
943
The arguments are a category C and a function F. This operations adds the
944
given function F to the category for the basic operation
945
IsomorphismFromTensorProductToInternalHom. F: ( a, b ) \mapsto
946
\mathrm{IsomorphismFromTensorProductToInternalHom}_{a,b}.
947
948
7.4-47 MorphismFromInternalHomToTensorProduct
949
950
MorphismFromInternalHomToTensorProduct( a, b )  operation
951
Returns: a morphism in \mathrm{Hom}( \mathrm{\underline{Hom}}(a,b),
952
a^{\vee} \otimes b ).
953
954
The arguments are two objects a,b. The output is the inverse of
955
\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}, namely
956
\mathrm{MorphismFromInternalHomToTensorProductWithGivenObjects}_{a,b}:
957
\mathrm{\underline{Hom}}(a,b) \rightarrow a^{\vee} \otimes b.
958
959
7.4-48 MorphismFromInternalHomToTensorProductWithGivenObjects
960
961
MorphismFromInternalHomToTensorProductWithGivenObjects( s, a, b, r )  operation
962
Returns: a morphism in \mathrm{Hom}( \mathrm{\underline{Hom}}(a,b),
963
a^{\vee} \otimes b ).
964
965
The arguments are an object s = \mathrm{\underline{Hom}}(a,b), two objects
966
a,b, and an object r = a^{\vee} \otimes b. The output is the inverse of
967
\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}, namely
968
\mathrm{MorphismFromInternalHomToTensorProductWithGivenObjects}_{a,b}:
969
\mathrm{\underline{Hom}}(a,b) \rightarrow a^{\vee} \otimes b.
970
971
7.4-49 AddMorphismFromInternalHomToTensorProductWithGivenObjects
972
973
AddMorphismFromInternalHomToTensorProductWithGivenObjects( C, F )  operation
974
Returns: nothing
975
976
The arguments are a category C and a function F. This operations adds the
977
given function F to the category for the basic operation
978
MorphismFromInternalHomToTensorProductWithGivenObjects. F: (
979
\mathrm{\underline{Hom}}(a,b),a,b,a^{\vee} \otimes b ) \mapsto
980
\mathrm{MorphismFromInternalHomToTensorProductWithGivenObjects}_{a,b}.
981
982
7.4-50 IsomorphismFromInternalHomToTensorProduct
983
984
IsomorphismFromInternalHomToTensorProduct( a, b )  operation
985
Returns: a morphism in \mathrm{Hom}( \mathrm{\underline{Hom}}(a,b),
986
a^{\vee} \otimes b ).
987
988
The arguments are two objects a,b. The output is the inverse of
989
\mathrm{IsomorphismFromTensorProductToInternalHom}, namely
990
\mathrm{IsomorphismFromInternalHomToTensorProduct}_{a,b}:
991
\mathrm{\underline{Hom}}(a,b) \rightarrow a^{\vee} \otimes b.
992
993
7.4-51 AddIsomorphismFromInternalHomToTensorProduct
994
995
AddIsomorphismFromInternalHomToTensorProduct( C, F )  operation
996
Returns: nothing
997
998
The arguments are a category C and a function F. This operations adds the
999
given function F to the category for the basic operation
1000
IsomorphismFromInternalHomToTensorProduct. F: ( a,b ) \mapsto
1001
\mathrm{IsomorphismFromInternalHomToTensorProduct}_{a,b}.
1002
1003
7.4-52 TraceMap
1004
1005
TraceMap( alpha )  attribute
1006
Returns: a morphism in \mathrm{Hom}(1,1).
1007
1008
The argument is a morphism \alpha. The output is the trace morphism
1009
\mathrm{trace}_{\alpha}: 1 \rightarrow 1.
1010
1011
7.4-53 AddTraceMap
1012
1013
AddTraceMap( C, F )  operation
1014
Returns: nothing
1015
1016
The arguments are a category C and a function F. This operations adds the
1017
given function F to the category for the basic operation TraceMap. F: \alpha
1018
\mapsto \mathrm{trace}_{\alpha}
1019
1020
7.4-54 RankMorphism
1021
1022
RankMorphism( a )  attribute
1023
Returns: a morphism in \mathrm{Hom}(1,1).
1024
1025
The argument is an object a. The output is the rank morphism
1026
\mathrm{rank}_a: 1 \rightarrow 1.
1027
1028
7.4-55 AddRankMorphism
1029
1030
AddRankMorphism( C, F )  operation
1031
Returns: nothing
1032
1033
The arguments are a category C and a function F. This operations adds the
1034
given function F to the category for the basic operation RankMorphism. F: a
1035
\mapsto \mathrm{rank}_{a}
1036
1037
7.4-56 IsomorphismFromDualToInternalHom
1038
1039
IsomorphismFromDualToInternalHom( a )  attribute
1040
Returns: a morphism in \mathrm{Hom}(a^{\vee}, \mathrm{Hom}(a,1)).
1041
1042
The argument is an object a. The output is the isomorphism
1043
\mathrm{IsomorphismFromDualToInternalHom}_{a}: a^{\vee} \rightarrow
1044
\mathrm{Hom}(a,1).
1045
1046
7.4-57 AddIsomorphismFromDualToInternalHom
1047
1048
AddIsomorphismFromDualToInternalHom( C, F )  operation
1049
Returns: nothing
1050
1051
The arguments are a category C and a function F. This operations adds the
1052
given function F to the category for the basic operation
1053
IsomorphismFromDualToInternalHom. F: a \mapsto
1054
\mathrm{IsomorphismFromDualToInternalHom}_{a}
1055
1056
7.4-58 IsomorphismFromInternalHomToDual
1057
1058
IsomorphismFromInternalHomToDual( a )  attribute
1059
Returns: a morphism in \mathrm{Hom}(\mathrm{Hom}(a,1), a^{\vee}).
1060
1061
The argument is an object a. The output is the isomorphism
1062
\mathrm{IsomorphismFromInternalHomToDual}_{a}: \mathrm{Hom}(a,1) \rightarrow
1063
a^{\vee}.
1064
1065
7.4-59 AddIsomorphismFromInternalHomToDual
1066
1067
AddIsomorphismFromInternalHomToDual( C, F )  operation
1068
Returns: nothing
1069
1070
The arguments are a category C and a function F. This operations adds the
1071
given function F to the category for the basic operation
1072
IsomorphismFromInternalHomToDual. F: a \mapsto
1073
\mathrm{IsomorphismFromInternalHomToDual}_{a}
1074
1075
7.4-60 UniversalPropertyOfDual
1076
1077
UniversalPropertyOfDual( t, a, alpha )  operation
1078
Returns: a morphism in \mathrm{Hom}(t, a^{\vee}).
1079
1080
The arguments are two objects t,a, and a morphism \alpha: t \otimes a
1081
\rightarrow 1. The output is the morphism t \rightarrow a^{\vee} given by
1082
the universal property of a^{\vee}.
1083
1084
7.4-61 AddUniversalPropertyOfDual
1085
1086
AddUniversalPropertyOfDual( C, F )  operation
1087
Returns: nothing
1088
1089
The arguments are a category C and a function F. This operations adds the
1090
given function F to the category for the basic operation
1091
UniversalPropertyOfDual. F: ( t,a,\alpha: t \otimes a \rightarrow 1 )
1092
\mapsto ( t \rightarrow a^{\vee} ).
1093
1094
7.4-62 LambdaIntroduction
1095
1096
LambdaIntroduction( alpha )  attribute
1097
Returns: a morphism in \mathrm{Hom}( 1, \mathrm{\underline{Hom}}(a,b) ).
1098
1099
The argument is a morphism \alpha: a \rightarrow b. The output is the
1100
corresponding morphism 1 \rightarrow \mathrm{\underline{Hom}}(a,b) under the
1101
tensor hom adjunction.
1102
1103
7.4-63 AddLambdaIntroduction
1104
1105
AddLambdaIntroduction( C, F )  operation
1106
Returns: nothing
1107
1108
The arguments are a category C and a function F. This operations adds the
1109
given function F to the category for the basic operation LambdaIntroduction.
1110
F: ( \alpha: a \rightarrow b ) \mapsto ( 1 \rightarrow
1111
\mathrm{\underline{Hom}}(a,b) ).
1112
1113
7.4-64 LambdaElimination
1114
1115
LambdaElimination( a, b, alpha )  operation
1116
Returns: a morphism in \mathrm{Hom}(a,b).
1117
1118
The arguments are two objects a,b, and a morphism \alpha: 1 \rightarrow
1119
\mathrm{\underline{Hom}}(a,b). The output is a morphism a \rightarrow b
1120
corresponding to \alpha under the tensor hom adjunction.
1121
1122
7.4-65 AddLambdaElimination
1123
1124
AddLambdaElimination( C, F )  operation
1125
Returns: nothing
1126
1127
The arguments are a category C and a function F. This operations adds the
1128
given function F to the category for the basic operation LambdaElimination.
1129
F: ( a,b,\alpha: 1 \rightarrow \mathrm{\underline{Hom}}(a,b) ) \mapsto ( a
1130
\rightarrow b ).
1131
1132
7.4-66 IsomorphismFromObjectToInternalHom
1133
1134
IsomorphismFromObjectToInternalHom( a )  attribute
1135
Returns: a morphism in \mathrm{Hom}(a, \mathrm{\underline{Hom}}(1,a)).
1136
1137
The argument is an object a. The output is the natural isomorphism a
1138
\rightarrow \mathrm{\underline{Hom}}(1,a).
1139
1140
7.4-67 IsomorphismFromObjectToInternalHomWithGivenInternalHom
1141
1142
IsomorphismFromObjectToInternalHomWithGivenInternalHom( a, r )  operation
1143
Returns: a morphism in \mathrm{Hom}(a, \mathrm{\underline{Hom}}(1,a)).
1144
1145
The argument is an object a, and an object r =
1146
\mathrm{\underline{Hom}}(1,a). The output is the natural isomorphism a
1147
\rightarrow \mathrm{\underline{Hom}}(1,a).
1148
1149
7.4-68 AddIsomorphismFromObjectToInternalHomWithGivenInternalHom
1150
1151
AddIsomorphismFromObjectToInternalHomWithGivenInternalHom( C, F )  operation
1152
Returns: nothing
1153
1154
The arguments are a category C and a function F. This operations adds the
1155
given function F to the category for the basic operation
1156
IsomorphismFromObjectToInternalHomWithGivenInternalHom. F: ( a,
1157
\mathrm{\underline{Hom}}(1,a) ) \mapsto ( a \rightarrow
1158
\mathrm{\underline{Hom}}(1,a) ).
1159
1160
7.4-69 IsomorphismFromInternalHomToObject
1161
1162
IsomorphismFromInternalHomToObject( a )  attribute
1163
Returns: a morphism in \mathrm{Hom}(\mathrm{\underline{Hom}}(1,a),a).
1164
1165
The argument is an object a. The output is the natural isomorphism
1166
\mathrm{\underline{Hom}}(1,a) \rightarrow a.
1167
1168
7.4-70 IsomorphismFromInternalHomToObjectWithGivenInternalHom
1169
1170
IsomorphismFromInternalHomToObjectWithGivenInternalHom( a, s )  operation
1171
Returns: a morphism in \mathrm{Hom}(\mathrm{\underline{Hom}}(1,a),a).
1172
1173
The argument is an object a, and an object s =
1174
\mathrm{\underline{Hom}}(1,a). The output is the natural isomorphism
1175
\mathrm{\underline{Hom}}(1,a) \rightarrow a.
1176
1177
7.4-71 AddIsomorphismFromInternalHomToObjectWithGivenInternalHom
1178
1179
AddIsomorphismFromInternalHomToObjectWithGivenInternalHom( C, F )  operation
1180
Returns: nothing
1181
1182
The arguments are a category C and a function F. This operations adds the
1183
given function F to the category for the basic operation
1184
IsomorphismFromInternalHomToObjectWithGivenInternalHom. F: ( a,
1185
\mathrm{\underline{Hom}}(1,a) ) \mapsto ( \mathrm{\underline{Hom}}(1,a)
1186
\rightarrow a ).
1187
1188
1189
7.5 Rigid Symmetric Closed Monoidal Categories
1190
1191
A symmetric closed monoidal category \mathbf{C} satisfying
1192
1193
 the natural morphism \underline{\mathrm{Hom}}(a_1,b_1) \otimes
1194
\underline{\mathrm{Hom}}(a_2,b_2) \rightarrow
1195
\underline{\mathrm{Hom}}(a_1 \otimes a_2,b_1 \otimes b_2) is an
1196
isomorphism,
1197
1198
 the natural morphism a \rightarrow
1199
\underline{\mathrm{Hom}}(\underline{\mathrm{Hom}}(a, 1), 1) is an
1200
isomorphism
1201
1202
is called a rigid symmetric closed monoidal category.
1203
1204
7.5-1 TensorProductInternalHomCompatibilityMorphismInverse
1205
1206
TensorProductInternalHomCompatibilityMorphismInverse( a, a', b, b' )  operation
1207
Returns: a morphism in \mathrm{Hom}( \mathrm{\underline{Hom}}(a \otimes
1208
b,a' \otimes b'), \mathrm{\underline{Hom}}(a,a') \otimes
1209
\mathrm{\underline{Hom}}(b,b')).
1210
1211
The arguments are four objects a, a', b, b'. The output is the natural
1212
morphism
1213
\mathrm{TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects}_{a,a',b,b'}:
1214
\mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') \rightarrow
1215
\mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b').
1216
1217
7.5-2 TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects
1218
1219
TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects( a, a', b, b', L )  operation
1220
Returns: a morphism in \mathrm{Hom}( \mathrm{\underline{Hom}}(a \otimes
1221
b,a' \otimes b'), \mathrm{\underline{Hom}}(a,a') \otimes
1222
\mathrm{\underline{Hom}}(b,b')).
1223
1224
The arguments are four objects a, a', b, b', and a list L = [
1225
\mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b'),
1226
\mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') ]. The output is the
1227
natural morphism
1228
\mathrm{TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects}_{a,a',b,b'}:
1229
\mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') \rightarrow
1230
\mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b').
1231
1232
7.5-3 AddTensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects
1233
1234
AddTensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects( C, F )  operation
1235
Returns: nothing
1236
1237
The arguments are a category C and a function F. This operations adds the
1238
given function F to the category for the basic operation
1239
TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects. F: (
1240
a,a',b,b', [ \mathrm{\underline{Hom}}(a,a') \otimes
1241
\mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes b,a'
1242
\otimes b') ]) \mapsto
1243
\mathrm{TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects}_{a,a',b,b'}
1244
.
1245
1246
7.5-4 MorphismFromBidual
1247
1248
MorphismFromBidual( a )  attribute
1249
Returns: a morphism in \mathrm{Hom}((a^{\vee})^{\vee},a).
1250
1251
The argument is an object a. The output is the inverse of the morphism to
1252
the bidual (a^{\vee})^{\vee} \rightarrow a.
1253
1254
7.5-5 MorphismFromBidualWithGivenBidual
1255
1256
MorphismFromBidualWithGivenBidual( a, s )  operation
1257
Returns: a morphism in \mathrm{Hom}((a^{\vee})^{\vee},a).
1258
1259
The argument is an object a, and an object s = (a^{\vee})^{\vee}. The output
1260
is the inverse of the morphism to the bidual (a^{\vee})^{\vee} \rightarrow
1261
a.
1262
1263
7.5-6 AddMorphismFromBidualWithGivenBidual
1264
1265
AddMorphismFromBidualWithGivenBidual( C, F )  operation
1266
Returns: nothing
1267
1268
The arguments are a category C and a function F. This operations adds the
1269
given function F to the category for the basic operation
1270
MorphismFromBidualWithGivenBidual. F: (a, (a^{\vee})^{\vee}) \mapsto
1271
((a^{\vee})^{\vee} \rightarrow a).
1272
1273
1274