Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X7 [33X[0;0YTensor Product and Internal Hom[133X[101X234[1X7.1 [33X[0;0YMonoidal Categories[133X[101X56[33X[0;0YA [23X6[123X-tuple [23X( \mathbf{C}, \otimes, 1, \alpha, \lambda, \rho )[123X consisting of[133X78[30X [33X[0;6Ya category [23X\mathbf{C}[123X,[133X910[30X [33X[0;6Ya functor [23X\otimes: \mathbf{C} \times \mathbf{C} \rightarrow11\mathbf{C}[123X,[133X1213[30X [33X[0;6Yan object [23X1 \in \mathbf{C}[123X,[133X1415[30X [33X[0;6Ya natural isomorphism [23X\alpha_{a,b,c}: a \otimes (b \otimes c) \cong (a16\otimes b) \otimes c[123X,[133X1718[30X [33X[0;6Ya natural isomorphism [23X\lambda_{a}: 1 \otimes a \cong a[123X,[133X1920[30X [33X[0;6Ya natural isomorphism [23X\rho_{a}: a \otimes 1 \cong a[123X,[133X2122[33X[0;0Yis called a [13Xmonoidal category[113X, if[133X2324[30X [33X[0;6Yfor all objects [23Xa,b,c,d[123X, the pentagon identity holds: [23X(\alpha_{a,b,c}25\otimes \mathrm{id}_d) \circ \alpha_{a,b \otimes c, d} \circ (26\mathrm{id}_a \otimes \alpha_{b,c,d} ) = \alpha_{a \otimes b, c, d}27\circ \alpha_{a,b,c \otimes d}[123X,[133X2829[30X [33X[0;6Yfor all objects [23Xa,c[123X, the triangle identity holds: [23X( \rho_a \otimes30\mathrm{id}_c ) \circ \alpha_{a,1,c} = \mathrm{id}_a \otimes31\lambda_c[123X.[133X3233[33X[0;0YThe corresponding GAP property is given by [10XIsMonoidalCategory[110X.[133X3435[1X7.1-1 TensorProductOnObjects[101X3637[29X[2XTensorProductOnObjects[102X( [3Xa[103X, [3Xb[103X ) [32X operation38[6XReturns:[106X [33X[0;10Yan object[133X3940[33X[0;0YThe arguments are two objects [23Xa, b[123X. The output is the tensor product [23Xa41\otimes b[123X.[133X4243[1X7.1-2 AddTensorProductOnObjects[101X4445[29X[2XAddTensorProductOnObjects[102X( [3XC[103X, [3XF[103X ) [32X operation46[6XReturns:[106X [33X[0;10Ynothing[133X4748[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the49given function [23XF[123X to the category for the basic operation50[10XTensorProductOnObjects[110X. [23XF: (a,b) \mapsto a \otimes b[123X.[133X5152[1X7.1-3 TensorProductOnMorphisms[101X5354[29X[2XTensorProductOnMorphisms[102X( [3Xalpha[103X, [3Xbeta[103X ) [32X operation55[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(a \otimes b, a' \otimes b')[123X[133X5657[33X[0;0YThe arguments are two morphisms [23X\alpha: a \rightarrow a', \beta: b58\rightarrow b'[123X. The output is the tensor product [23X\alpha \otimes \beta[123X.[133X5960[1X7.1-4 TensorProductOnMorphismsWithGivenTensorProducts[101X6162[29X[2XTensorProductOnMorphismsWithGivenTensorProducts[102X( [3Xs[103X, [3Xalpha[103X, [3Xbeta[103X, [3Xr[103X ) [32X operation63[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(a \otimes b, a' \otimes b')[123X[133X6465[33X[0;0YThe arguments are an object [23Xs = a \otimes b[123X, two morphisms [23X\alpha: a66\rightarrow a', \beta: b \rightarrow b'[123X, and an object [23Xr = a' \otimes b'[123X.67The output is the tensor product [23X\alpha \otimes \beta[123X.[133X6869[1X7.1-5 AddTensorProductOnMorphismsWithGivenTensorProducts[101X7071[29X[2XAddTensorProductOnMorphismsWithGivenTensorProducts[102X( [3XC[103X, [3XF[103X ) [32X operation72[6XReturns:[106X [33X[0;10Ynothing[133X7374[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the75given function [23XF[123X to the category for the basic operation76[10XTensorProductOnMorphismsWithGivenTensorProducts[110X. [23XF: ( a \otimes b, \alpha: a77\rightarrow a', \beta: b \rightarrow b', a' \otimes b' ) \mapsto \alpha78\otimes \beta[123X.[133X7980[1X7.1-6 AssociatorRightToLeft[101X8182[29X[2XAssociatorRightToLeft[102X( [3Xa[103X, [3Xb[103X, [3Xc[103X ) [32X operation83[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a \otimes (b \otimes c), (a \otimes b)84\otimes c )[123X.[133X8586[33X[0;0YThe arguments are three objects [23Xa,b,c[123X. The output is the associator87[23X\alpha_{a,(b,c)}: a \otimes (b \otimes c) \rightarrow (a \otimes b) \otimes88c[123X.[133X8990[1X7.1-7 AssociatorRightToLeftWithGivenTensorProducts[101X9192[29X[2XAssociatorRightToLeftWithGivenTensorProducts[102X( [3Xs[103X, [3Xa[103X, [3Xb[103X, [3Xc[103X, [3Xr[103X ) [32X operation93[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a \otimes (b \otimes c), (a \otimes b)94\otimes c )[123X.[133X9596[33X[0;0YThe arguments are an object [23Xs = a \otimes (b \otimes c)[123X, three objects97[23Xa,b,c[123X, and an object [23Xr = (a \otimes b) \otimes c[123X. The output is the98associator [23X\alpha_{a,(b,c)}: a \otimes (b \otimes c) \rightarrow (a \otimes99b) \otimes c[123X.[133X100101[1X7.1-8 AddAssociatorRightToLeftWithGivenTensorProducts[101X102103[29X[2XAddAssociatorRightToLeftWithGivenTensorProducts[102X( [3XC[103X, [3XF[103X ) [32X operation104[6XReturns:[106X [33X[0;10Ynothing[133X105106[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the107given function [23XF[123X to the category for the basic operation108[10XAssociatorRightToLeftWithGivenTensorProducts[110X. [23XF: ( a \otimes (b \otimes c),109a, b, c, (a \otimes b) \otimes c ) \mapsto \alpha_{a,(b,c)}[123X.[133X110111[1X7.1-9 AssociatorLeftToRight[101X112113[29X[2XAssociatorLeftToRight[102X( [3Xa[103X, [3Xb[103X, [3Xc[103X ) [32X operation114[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( (a \otimes b) \otimes c \rightarrow a115\otimes (b \otimes c) )[123X.[133X116117[33X[0;0YThe arguments are three objects [23Xa,b,c[123X. The output is the associator118[23X\alpha_{(a,b),c}: (a \otimes b) \otimes c \rightarrow a \otimes (b \otimes119c)[123X.[133X120121[1X7.1-10 AssociatorLeftToRightWithGivenTensorProducts[101X122123[29X[2XAssociatorLeftToRightWithGivenTensorProducts[102X( [3Xs[103X, [3Xa[103X, [3Xb[103X, [3Xc[103X, [3Xr[103X ) [32X operation124[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( (a \otimes b) \otimes c \rightarrow a125\otimes (b \otimes c) )[123X.[133X126127[33X[0;0YThe arguments are an object [23Xs = (a \otimes b) \otimes c[123X, three objects128[23Xa,b,c[123X, and an object [23Xr = a \otimes (b \otimes c)[123X. The output is the129associator [23X\alpha_{(a,b),c}: (a \otimes b) \otimes c \rightarrow a \otimes130(b \otimes c)[123X.[133X131132[1X7.1-11 AddAssociatorLeftToRightWithGivenTensorProducts[101X133134[29X[2XAddAssociatorLeftToRightWithGivenTensorProducts[102X( [3XC[103X, [3XF[103X ) [32X operation135[6XReturns:[106X [33X[0;10Ynothing[133X136137[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the138given function [23XF[123X to the category for the basic operation139[10XAssociatorLeftToRightWithGivenTensorProducts[110X. [23XF: (( a \otimes b ) \otimes c,140a, b, c, a \otimes (b \otimes c )) \mapsto \alpha_{(a,b),c}[123X.[133X141142[1X7.1-12 TensorUnit[101X143144[29X[2XTensorUnit[102X( [3XC[103X ) [32X attribute145[6XReturns:[106X [33X[0;10Yan object[133X146147[33X[0;0YThe argument is a category [23X\mathbf{C}[123X. The output is the tensor unit [23X1[123X of148[23X\mathbf{C}[123X.[133X149150[1X7.1-13 AddTensorUnit[101X151152[29X[2XAddTensorUnit[102X( [3XC[103X, [3XF[103X ) [32X operation153[6XReturns:[106X [33X[0;10Ynothing[133X154155[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the156given function [23XF[123X to the category for the basic operation [10XTensorUnit[110X. [23XF: ( )157\mapsto 1[123X.[133X158159[1X7.1-14 LeftUnitor[101X160161[29X[2XLeftUnitor[102X( [3Xa[103X ) [32X attribute162[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(1 \otimes a, a )[123X[133X163164[33X[0;0YThe argument is an object [23Xa[123X. The output is the left unitor [23X\lambda_a: 1165\otimes a \rightarrow a[123X.[133X166167[1X7.1-15 LeftUnitorWithGivenTensorProduct[101X168169[29X[2XLeftUnitorWithGivenTensorProduct[102X( [3Xa[103X, [3Xs[103X ) [32X operation170[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(1 \otimes a, a )[123X[133X171172[33X[0;0YThe arguments are an object [23Xa[123X and an object [23Xs = 1 \otimes a[123X. The output is173the left unitor [23X\lambda_a: 1 \otimes a \rightarrow a[123X.[133X174175[1X7.1-16 AddLeftUnitorWithGivenTensorProduct[101X176177[29X[2XAddLeftUnitorWithGivenTensorProduct[102X( [3XC[103X, [3XF[103X ) [32X operation178[6XReturns:[106X [33X[0;10Ynothing[133X179180[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the181given function [23XF[123X to the category for the basic operation182[10XLeftUnitorWithGivenTensorProduct[110X. [23XF: (a, 1 \otimes a) \mapsto \lambda_a[123X.[133X183184[1X7.1-17 LeftUnitorInverse[101X185186[29X[2XLeftUnitorInverse[102X( [3Xa[103X ) [32X attribute187[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(a, 1 \otimes a)[123X[133X188189[33X[0;0YThe argument is an object [23Xa[123X. The output is the inverse of the left unitor190[23X\lambda_a^{-1}: a \rightarrow 1 \otimes a[123X.[133X191192[1X7.1-18 LeftUnitorInverseWithGivenTensorProduct[101X193194[29X[2XLeftUnitorInverseWithGivenTensorProduct[102X( [3Xa[103X, [3Xr[103X ) [32X operation195[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(a, 1 \otimes a)[123X[133X196197[33X[0;0YThe argument is an object [23Xa[123X and an object [23Xr = 1 \otimes a[123X. The output is the198inverse of the left unitor [23X\lambda_a^{-1}: a \rightarrow 1 \otimes a[123X.[133X199200[1X7.1-19 AddLeftUnitorInverseWithGivenTensorProduct[101X201202[29X[2XAddLeftUnitorInverseWithGivenTensorProduct[102X( [3XC[103X, [3XF[103X ) [32X operation203[6XReturns:[106X [33X[0;10Ynothing[133X204205[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the206given function [23XF[123X to the category for the basic operation207[10XLeftUnitorInverseWithGivenTensorProduct[110X. [23XF: (a, 1 \otimes a) \mapsto208\lambda_a^{-1}[123X.[133X209210[1X7.1-20 RightUnitor[101X211212[29X[2XRightUnitor[102X( [3Xa[103X ) [32X attribute213[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(a \otimes 1, a )[123X[133X214215[33X[0;0YThe argument is an object [23Xa[123X. The output is the right unitor [23X\rho_a: a216\otimes 1 \rightarrow a[123X.[133X217218[1X7.1-21 RightUnitorWithGivenTensorProduct[101X219220[29X[2XRightUnitorWithGivenTensorProduct[102X( [3Xa[103X, [3Xs[103X ) [32X operation221[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(a \otimes 1, a )[123X[133X222223[33X[0;0YThe arguments are an object [23Xa[123X and an object [23Xs = a \otimes 1[123X. The output is224the right unitor [23X\rho_a: a \otimes 1 \rightarrow a[123X.[133X225226[1X7.1-22 AddRightUnitorWithGivenTensorProduct[101X227228[29X[2XAddRightUnitorWithGivenTensorProduct[102X( [3XC[103X, [3XF[103X ) [32X operation229[6XReturns:[106X [33X[0;10Ynothing[133X230231[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the232given function [23XF[123X to the category for the basic operation233[10XRightUnitorWithGivenTensorProduct[110X. [23XF: (a, a \otimes 1) \mapsto \rho_a[123X.[133X234235[1X7.1-23 RightUnitorInverse[101X236237[29X[2XRightUnitorInverse[102X( [3Xa[103X ) [32X attribute238[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a, a \otimes 1 )[123X[133X239240[33X[0;0YThe argument is an object [23Xa[123X. The output is the inverse of the right unitor241[23X\rho_a^{-1}: a \rightarrow a \otimes 1[123X.[133X242243[1X7.1-24 RightUnitorInverseWithGivenTensorProduct[101X244245[29X[2XRightUnitorInverseWithGivenTensorProduct[102X( [3Xa[103X, [3Xr[103X ) [32X operation246[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a, a \otimes 1 )[123X[133X247248[33X[0;0YThe arguments are an object [23Xa[123X and an object [23Xr = a \otimes 1[123X. The output is249the inverse of the right unitor [23X\rho_a^{-1}: a \rightarrow a \otimes 1[123X.[133X250251[1X7.1-25 AddRightUnitorInverseWithGivenTensorProduct[101X252253[29X[2XAddRightUnitorInverseWithGivenTensorProduct[102X( [3XC[103X, [3XF[103X ) [32X operation254[6XReturns:[106X [33X[0;10Ynothing[133X255256[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the257given function [23XF[123X to the category for the basic operation258[10XRightUnitorInverseWithGivenTensorProduct[110X. [23XF: (a, a \otimes 1) \mapsto259\rho_a^{-1}[123X.[133X260261[1X7.1-26 LeftDistributivityExpanding[101X262263[29X[2XLeftDistributivityExpanding[102X( [3Xa[103X, [3XL[103X ) [32X operation264[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a \otimes (b_1 \oplus \dots \oplus265b_n), (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n) )[123X[133X266267[33X[0;0YThe arguments are an object [23Xa[123X and a list of objects [23XL = (b_1, \dots, b_n)[123X.268The output is the left distributivity morphism [23Xa \otimes (b_1 \oplus \dots269\oplus b_n) \rightarrow (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n)[123X.[133X270271[1X7.1-27 LeftDistributivityExpandingWithGivenObjects[101X272273[29X[2XLeftDistributivityExpandingWithGivenObjects[102X( [3Xs[103X, [3Xa[103X, [3XL[103X, [3Xr[103X ) [32X operation274[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( s, r )[123X[133X275276[33X[0;0YThe arguments are an object [23Xs = a \otimes (b_1 \oplus \dots \oplus b_n)[123X, an277object [23Xa[123X, a list of objects [23XL = (b_1, \dots, b_n)[123X, and an object [23Xr = (a278\otimes b_1) \oplus \dots \oplus (a \otimes b_n)[123X. The output is the left279distributivity morphism [23Xs \rightarrow r[123X.[133X280281[1X7.1-28 AddLeftDistributivityExpandingWithGivenObjects[101X282283[29X[2XAddLeftDistributivityExpandingWithGivenObjects[102X( [3XC[103X, [3XF[103X ) [32X operation284[6XReturns:[106X [33X[0;10Ynothing[133X285286[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the287given function [23XF[123X to the category for the basic operation288[10XLeftDistributivityExpandingWithGivenObjects[110X. [23XF: (a \otimes (b_1 \oplus \dots289\oplus b_n), a, L, (a \otimes b_1) \oplus \dots \oplus (a \otimes b_n))290\mapsto \mathrm{LeftDistributivityExpandingWithGivenObjects}(a,L)[123X.[133X291292[1X7.1-29 LeftDistributivityFactoring[101X293294[29X[2XLeftDistributivityFactoring[102X( [3Xa[103X, [3XL[103X ) [32X operation295[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( (a \otimes b_1) \oplus \dots \oplus (a296\otimes b_n), a \otimes (b_1 \oplus \dots \oplus b_n) )[123X[133X297298[33X[0;0YThe arguments are an object [23Xa[123X and a list of objects [23XL = (b_1, \dots, b_n)[123X.299The output is the left distributivity morphism [23X(a \otimes b_1) \oplus \dots300\oplus (a \otimes b_n) \rightarrow a \otimes (b_1 \oplus \dots \oplus b_n)[123X.[133X301302[1X7.1-30 LeftDistributivityFactoringWithGivenObjects[101X303304[29X[2XLeftDistributivityFactoringWithGivenObjects[102X( [3Xs[103X, [3Xa[103X, [3XL[103X, [3Xr[103X ) [32X operation305[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( s, r )[123X[133X306307[33X[0;0YThe arguments are an object [23Xs = (a \otimes b_1) \oplus \dots \oplus (a308\otimes b_n)[123X, an object [23Xa[123X, a list of objects [23XL = (b_1, \dots, b_n)[123X, and an309object [23Xr = a \otimes (b_1 \oplus \dots \oplus b_n)[123X. The output is the left310distributivity morphism [23Xs \rightarrow r[123X.[133X311312[1X7.1-31 AddLeftDistributivityFactoringWithGivenObjects[101X313314[29X[2XAddLeftDistributivityFactoringWithGivenObjects[102X( [3XC[103X, [3XF[103X ) [32X operation315[6XReturns:[106X [33X[0;10Ynothing[133X316317[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the318given function [23XF[123X to the category for the basic operation319[10XLeftDistributivityFactoringWithGivenObjects[110X. [23XF: ((a \otimes b_1) \oplus320\dots \oplus (a \otimes b_n), a, L, a \otimes (b_1 \oplus \dots \oplus b_n))321\mapsto \mathrm{LeftDistributivityFactoringWithGivenObjects}(a,L)[123X.[133X322323[1X7.1-32 RightDistributivityExpanding[101X324325[29X[2XRightDistributivityExpanding[102X( [3XL[103X, [3Xa[103X ) [32X operation326[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( (b_1 \oplus \dots \oplus b_n) \otimes327a, (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a) )[123X[133X328329[33X[0;0YThe arguments are a list of objects [23XL = (b_1, \dots, b_n)[123X and an object [23Xa[123X.330The output is the right distributivity morphism [23X(b_1 \oplus \dots \oplus331b_n) \otimes a \rightarrow (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes332a)[123X.[133X333334[1X7.1-33 RightDistributivityExpandingWithGivenObjects[101X335336[29X[2XRightDistributivityExpandingWithGivenObjects[102X( [3Xs[103X, [3XL[103X, [3Xa[103X, [3Xr[103X ) [32X operation337[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( s, r )[123X[133X338339[33X[0;0YThe arguments are an object [23Xs = (b_1 \oplus \dots \oplus b_n) \otimes a[123X, a340list of objects [23XL = (b_1, \dots, b_n)[123X, an object [23Xa[123X, and an object [23Xr = (b_1341\otimes a) \oplus \dots \oplus (b_n \otimes a)[123X. The output is the right342distributivity morphism [23Xs \rightarrow r[123X.[133X343344[1X7.1-34 AddRightDistributivityExpandingWithGivenObjects[101X345346[29X[2XAddRightDistributivityExpandingWithGivenObjects[102X( [3XC[103X, [3XF[103X ) [32X operation347[6XReturns:[106X [33X[0;10Ynothing[133X348349[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the350given function [23XF[123X to the category for the basic operation351[10XRightDistributivityExpandingWithGivenObjects[110X. [23XF: ((b_1 \oplus \dots \oplus352b_n) \otimes a, L, a, (b_1 \otimes a) \oplus \dots \oplus (b_n \otimes a))353\mapsto \mathrm{RightDistributivityExpandingWithGivenObjects}(L,a)[123X.[133X354355[1X7.1-35 RightDistributivityFactoring[101X356357[29X[2XRightDistributivityFactoring[102X( [3XL[103X, [3Xa[103X ) [32X operation358[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( (b_1 \otimes a) \oplus \dots \oplus359(b_n \otimes a), (b_1 \oplus \dots \oplus b_n) \otimes a)[123X[133X360361[33X[0;0YThe arguments are a list of objects [23XL = (b_1, \dots, b_n)[123X and an object [23Xa[123X.362The output is the right distributivity morphism [23X(b_1 \otimes a) \oplus \dots363\oplus (b_n \otimes a) \rightarrow (b_1 \oplus \dots \oplus b_n) \otimes a [123X.[133X364365[1X7.1-36 RightDistributivityFactoringWithGivenObjects[101X366367[29X[2XRightDistributivityFactoringWithGivenObjects[102X( [3Xs[103X, [3XL[103X, [3Xa[103X, [3Xr[103X ) [32X operation368[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( s, r )[123X[133X369370[33X[0;0YThe arguments are an object [23Xs = (b_1 \otimes a) \oplus \dots \oplus (b_n371\otimes a)[123X, a list of objects [23XL = (b_1, \dots, b_n)[123X, an object [23Xa[123X, and an372object [23Xr = (b_1 \oplus \dots \oplus b_n) \otimes a[123X. The output is the right373distributivity morphism [23Xs \rightarrow r[123X.[133X374375[1X7.1-37 AddRightDistributivityFactoringWithGivenObjects[101X376377[29X[2XAddRightDistributivityFactoringWithGivenObjects[102X( [3XC[103X, [3XF[103X ) [32X operation378[6XReturns:[106X [33X[0;10Ynothing[133X379380[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the381given function [23XF[123X to the category for the basic operation382[10XRightDistributivityFactoringWithGivenObjects[110X. [23XF: ((b_1 \otimes a) \oplus383\dots \oplus (b_n \otimes a), L, a, (b_1 \oplus \dots \oplus b_n) \otimes a)384\mapsto \mathrm{RightDistributivityFactoringWithGivenObjects}(L,a)[123X.[133X385386387[1X7.2 [33X[0;0YBraided Monoidal Categories[133X[101X388389[33X[0;0YA monoidal category [23X\mathbf{C}[123X equipped with a natural isomorphism [23XB_{a,b}:390a \otimes b \cong b \otimes a[123X is called a [13Xbraided monoidal category[113X if[133X391392[30X [33X[0;6Y[23X\lambda_a \circ B_{a,1} = \rho_a[123X,[133X393394[30X [33X[0;6Y[23X(B_{c,a} \otimes \mathrm{id}_b) \circ \alpha_{c,a,b} \circ B_{a395\otimes b,c} = \alpha_{a,c,b} \circ ( \mathrm{id}_a \otimes B_{b,c})396\circ \alpha^{-1}_{a,b,c}[123X,[133X397398[30X [33X[0;6Y[23X( \mathrm{id}_b \otimes B_{c,a} ) \circ \alpha^{-1}_{b,c,a} \circ399B_{a,b \otimes c} = \alpha^{-1}_{b,a,c} \circ (B_{a,b} \otimes400\mathrm{id}_c) \circ \alpha_{a,b,c}[123X.[133X401402[33X[0;0YThe corresponding GAP property is given by [10XIsBraidedMonoidalCategory[110X.[133X403404[1X7.2-1 Braiding[101X405406[29X[2XBraiding[102X( [3Xa[103X, [3Xb[103X ) [32X operation407[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a \otimes b, b \otimes a )[123X.[133X408409[33X[0;0YThe arguments are two objects [23Xa,b[123X. The output is the braiding [23X B_{a,b}: a410\otimes b \rightarrow b \otimes a[123X.[133X411412[1X7.2-2 BraidingWithGivenTensorProducts[101X413414[29X[2XBraidingWithGivenTensorProducts[102X( [3Xs[103X, [3Xa[103X, [3Xb[103X, [3Xr[103X ) [32X operation415[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a \otimes b, b \otimes a )[123X.[133X416417[33X[0;0YThe arguments are an object [23Xs = a \otimes b[123X, two objects [23Xa,b[123X, and an object418[23Xr = b \otimes a[123X. The output is the braiding [23X B_{a,b}: a \otimes b419\rightarrow b \otimes a[123X.[133X420421[1X7.2-3 AddBraidingWithGivenTensorProducts[101X422423[29X[2XAddBraidingWithGivenTensorProducts[102X( [3XC[103X, [3XF[103X ) [32X operation424[6XReturns:[106X [33X[0;10Ynothing[133X425426[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the427given function [23XF[123X to the category for the basic operation428[10XBraidingWithGivenTensorProducts[110X. [23XF: (a \otimes b, a, b, b \otimes a)429\rightarrow B_{a,b}[123X.[133X430431[1X7.2-4 BraidingInverse[101X432433[29X[2XBraidingInverse[102X( [3Xa[103X, [3Xb[103X ) [32X operation434[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( b \otimes a, a \otimes b )[123X.[133X435436[33X[0;0YThe arguments are two objects [23Xa,b[123X. The output is the inverse of the braiding437[23X B_{a,b}^{-1}: b \otimes a \rightarrow a \otimes b[123X.[133X438439[1X7.2-5 BraidingInverseWithGivenTensorProducts[101X440441[29X[2XBraidingInverseWithGivenTensorProducts[102X( [3Xs[103X, [3Xa[103X, [3Xb[103X, [3Xr[103X ) [32X operation442[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( b \otimes a, a \otimes b )[123X.[133X443444[33X[0;0YThe arguments are an object [23Xs = b \otimes a[123X, two objects [23Xa,b[123X, and an object445[23Xr = a \otimes b[123X. The output is the braiding [23X B_{a,b}^{-1}: b \otimes a446\rightarrow a \otimes b[123X.[133X447448[1X7.2-6 AddBraidingInverseWithGivenTensorProducts[101X449450[29X[2XAddBraidingInverseWithGivenTensorProducts[102X( [3XC[103X, [3XF[103X ) [32X operation451[6XReturns:[106X [33X[0;10Ynothing[133X452453[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the454given function [23XF[123X to the category for the basic operation455[10XBraidingInverseWithGivenTensorProducts[110X. [23XF: (b \otimes a, a, b, a \otimes b)456\rightarrow B_{a,b}^{-1}[123X.[133X457458459[1X7.3 [33X[0;0YSymmetric Monoidal Categories[133X[101X460461[33X[0;0YA braided monoidal category [23X\mathbf{C}[123X is called [13Xsymmetric monoidal category[113X462if [23XB_{a,b}^{-1} = B_{b,a}[123X. The corresponding GAP property is given by463[10XIsSymmetricMonoidalCategory[110X.[133X464465466[1X7.4 [33X[0;0YSymmetric Closed Monoidal Categories[133X[101X467468[33X[0;0YA symmetric monoidal category [23X\mathbf{C}[123X which has for each functor [23X-469\otimes b: \mathbf{C} \rightarrow \mathbf{C}[123X a right adjoint (denoted by470[23X\underline{\mathrm{Hom}}(b,-)[123X) is called a [13Xsymmetric closed monoidal471category[113X. The corresponding GAP property is given by472[10XIsSymmetricClosedMonoidalCategory[110X.[133X473474[1X7.4-1 InternalHomOnObjects[101X475476[29X[2XInternalHomOnObjects[102X( [3Xa[103X, [3Xb[103X ) [32X operation477[6XReturns:[106X [33X[0;10Yan object[133X478479[33X[0;0YThe arguments are two objects [23Xa,b[123X. The output is the internal hom object480[23X\underline{\mathrm{Hom}}(a,b)[123X.[133X481482[1X7.4-2 AddInternalHomOnObjects[101X483484[29X[2XAddInternalHomOnObjects[102X( [3XC[103X, [3XF[103X ) [32X operation485[6XReturns:[106X [33X[0;10Ynothing[133X486487[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the488given function [23XF[123X to the category for the basic operation489[10XInternalHomOnObjects[110X. [23XF: (a,b) \mapsto \underline{\mathrm{Hom}}(a,b)[123X.[133X490491[1X7.4-3 InternalHomOnMorphisms[101X492493[29X[2XInternalHomOnMorphisms[102X( [3Xalpha[103X, [3Xbeta[103X ) [32X operation494[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \underline{\mathrm{Hom}}(a',b),495\underline{\mathrm{Hom}}(a,b') )[123X[133X496497[33X[0;0YThe arguments are two morphisms [23X\alpha: a \rightarrow a', \beta: b498\rightarrow b'[123X. The output is the internal hom morphism499[23X\underline{\mathrm{Hom}}(\alpha,\beta): \underline{\mathrm{Hom}}(a',b)500\rightarrow \underline{\mathrm{Hom}}(a,b')[123X.[133X501502[1X7.4-4 InternalHomOnMorphismsWithGivenInternalHoms[101X503504[29X[2XInternalHomOnMorphismsWithGivenInternalHoms[102X( [3Xs[103X, [3Xalpha[103X, [3Xbeta[103X, [3Xr[103X ) [32X operation505[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \underline{\mathrm{Hom}}(a',b),506\underline{\mathrm{Hom}}(a,b') )[123X[133X507508[33X[0;0YThe arguments are an object [23Xs = \underline{\mathrm{Hom}}(a',b)[123X, two509morphisms [23X\alpha: a \rightarrow a', \beta: b \rightarrow b'[123X, and an object [23Xr510= \underline{\mathrm{Hom}}(a,b')[123X. The output is the internal hom morphism511[23X\underline{\mathrm{Hom}}(\alpha,\beta): \underline{\mathrm{Hom}}(a',b)512\rightarrow \underline{\mathrm{Hom}}(a,b')[123X.[133X513514[1X7.4-5 AddInternalHomOnMorphismsWithGivenInternalHoms[101X515516[29X[2XAddInternalHomOnMorphismsWithGivenInternalHoms[102X( [3XC[103X, [3XF[103X ) [32X operation517[6XReturns:[106X [33X[0;10Ynothing[133X518519[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the520given function [23XF[123X to the category for the basic operation521[10XInternalHomOnMorphismsWithGivenInternalHoms[110X. [23XF:522(\underline{\mathrm{Hom}}(a',b), \alpha: a \rightarrow a', \beta: b523\rightarrow b', \underline{\mathrm{Hom}}(a,b') ) \mapsto524\underline{\mathrm{Hom}}(\alpha,\beta)[123X.[133X525526[1X7.4-6 EvaluationMorphism[101X527528[29X[2XEvaluationMorphism[102X( [3Xa[103X, [3Xb[103X ) [32X operation529[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b) \otimes530a, b )[123X.[133X531532[33X[0;0YThe arguments are two objects [23Xa, b[123X. The output is the evaluation morphism533[23X\mathrm{ev}_{a,b}: \mathrm{\underline{Hom}}(a,b) \otimes a \rightarrow b[123X,534i.e., the counit of the tensor hom adjunction.[133X535536[1X7.4-7 EvaluationMorphismWithGivenSource[101X537538[29X[2XEvaluationMorphismWithGivenSource[102X( [3Xa[103X, [3Xb[103X, [3Xs[103X ) [32X operation539[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b) \otimes540a, b )[123X.[133X541542[33X[0;0YThe arguments are two objects [23Xa,b[123X and an object [23Xs =543\mathrm{\underline{Hom}}(a,b) \otimes a[123X. The output is the evaluation544morphism [23X\mathrm{ev}_{a,b}: \mathrm{\underline{Hom}}(a,b) \otimes a545\rightarrow b[123X, i.e., the counit of the tensor hom adjunction.[133X546547[1X7.4-8 AddEvaluationMorphismWithGivenSource[101X548549[29X[2XAddEvaluationMorphismWithGivenSource[102X( [3XC[103X, [3XF[103X ) [32X operation550[6XReturns:[106X [33X[0;10Ynothing[133X551552[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the553given function [23XF[123X to the category for the basic operation554[10XEvaluationMorphismWithGivenSource[110X. [23XF: (a, b, \mathrm{\underline{Hom}}(a,b)555\otimes a) \mapsto \mathrm{ev}_{a,b}[123X.[133X556557[1X7.4-9 CoevaluationMorphism[101X558559[29X[2XCoevaluationMorphism[102X( [3Xa[103X, [3Xb[103X ) [32X operation560[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a, \mathrm{\underline{Hom}}(b, a561\otimes b) )[123X.[133X562563[33X[0;0YThe arguments are two objects [23Xa,b[123X. The output is the coevaluation morphism564[23X\mathrm{coev}_{a,b}: a \rightarrow \mathrm{\underline{Hom}(b, a \otimes b)}[123X,565i.e., the unit of the tensor hom adjunction.[133X566567[1X7.4-10 CoevaluationMorphismWithGivenRange[101X568569[29X[2XCoevaluationMorphismWithGivenRange[102X( [3Xa[103X, [3Xb[103X, [3Xr[103X ) [32X operation570[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a, \mathrm{\underline{Hom}}(b, a571\otimes b) )[123X.[133X572573[33X[0;0YThe arguments are two objects [23Xa,b[123X and an object [23Xr =574\mathrm{\underline{Hom}(b, a \otimes b)}[123X. The output is the coevaluation575morphism [23X\mathrm{coev}_{a,b}: a \rightarrow \mathrm{\underline{Hom}(b, a576\otimes b)}[123X, i.e., the unit of the tensor hom adjunction.[133X577578[1X7.4-11 AddCoevaluationMorphismWithGivenRange[101X579580[29X[2XAddCoevaluationMorphismWithGivenRange[102X( [3XC[103X, [3XF[103X ) [32X operation581[6XReturns:[106X [33X[0;10Ynothing[133X582583[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the584given function [23XF[123X to the category for the basic operation585[10XCoevaluationMorphismWithGivenRange[110X. [23XF: (a, b, \mathrm{\underline{Hom}}(b, a586\otimes b)) \mapsto \mathrm{coev}_{a,b}[123X.[133X587588[1X7.4-12 TensorProductToInternalHomAdjunctionMap[101X589590[29X[2XTensorProductToInternalHomAdjunctionMap[102X( [3Xa[103X, [3Xb[103X, [3Xf[103X ) [32X operation591[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a, \mathrm{\underline{Hom}}(b,c) )[123X.[133X592593[33X[0;0YThe arguments are objects [23Xa,b[123X and a morphism [23Xf: a \otimes b \rightarrow c[123X.594The output is a morphism [23Xg: a \rightarrow \mathrm{\underline{Hom}}(b,c)[123X595corresponding to [23Xf[123X under the tensor hom adjunction.[133X596597[1X7.4-13 AddTensorProductToInternalHomAdjunctionMap[101X598599[29X[2XAddTensorProductToInternalHomAdjunctionMap[102X( [3XC[103X, [3XF[103X ) [32X operation600[6XReturns:[106X [33X[0;10Ynothing[133X601602[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the603given function [23XF[123X to the category for the basic operation604[10XTensorProductToInternalHomAdjunctionMap[110X. [23XF: (a, b, f: a \otimes b605\rightarrow c) \mapsto ( g: a \rightarrow \mathrm{\underline{Hom}}(b,c) )[123X.[133X606607[1X7.4-14 InternalHomToTensorProductAdjunctionMap[101X608609[29X[2XInternalHomToTensorProductAdjunctionMap[102X( [3Xb[103X, [3Xc[103X, [3Xg[103X ) [32X operation610[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(a \otimes b, c)[123X.[133X611612[33X[0;0YThe arguments are objects [23Xb,c[123X and a morphism [23Xg: a \rightarrow613\mathrm{\underline{Hom}}(b,c)[123X. The output is a morphism [23Xf: a \otimes b614\rightarrow c[123X corresponding to [23Xg[123X under the tensor hom adjunction.[133X615616[1X7.4-15 AddInternalHomToTensorProductAdjunctionMap[101X617618[29X[2XAddInternalHomToTensorProductAdjunctionMap[102X( [3XC[103X, [3XF[103X ) [32X operation619[6XReturns:[106X [33X[0;10Ynothing[133X620621[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the622given function [23XF[123X to the category for the basic operation623[10XInternalHomToTensorProductAdjunctionMap[110X. [23XF: (b, c, g: a \rightarrow624\mathrm{\underline{Hom}}(b,c)) \mapsto ( g: a \otimes b \rightarrow c )[123X.[133X625626[1X7.4-16 MonoidalPreComposeMorphism[101X627628[29X[2XMonoidalPreComposeMorphism[102X( [3Xa[103X, [3Xb[103X, [3Xc[103X ) [32X operation629[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b) \otimes630\mathrm{\underline{Hom}}(b,c), \mathrm{\underline{Hom}}(a,c) )[123X.[133X631632[33X[0;0YThe arguments are three objects [23Xa,b,c[123X. The output is the precomposition633morphism [23X\mathrm{MonoidalPreComposeMorphismWithGivenObjects}_{a,b,c}:634\mathrm{\underline{Hom}}(a,b) \otimes \mathrm{\underline{Hom}}(b,c)635\rightarrow \mathrm{\underline{Hom}}(a,c)[123X.[133X636637[1X7.4-17 MonoidalPreComposeMorphismWithGivenObjects[101X638639[29X[2XMonoidalPreComposeMorphismWithGivenObjects[102X( [3Xs[103X, [3Xa[103X, [3Xb[103X, [3Xc[103X, [3Xr[103X ) [32X operation640[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b) \otimes641\mathrm{\underline{Hom}}(b,c), \mathrm{\underline{Hom}}(a,c) )[123X.[133X642643[33X[0;0YThe arguments are an object [23Xs = \mathrm{\underline{Hom}}(a,b) \otimes644\mathrm{\underline{Hom}}(b,c)[123X, three objects [23Xa,b,c[123X, and an object [23Xr =645\mathrm{\underline{Hom}}(a,c)[123X. The output is the precomposition morphism646[23X\mathrm{MonoidalPreComposeMorphismWithGivenObjects}_{a,b,c}:647\mathrm{\underline{Hom}}(a,b) \otimes \mathrm{\underline{Hom}}(b,c)648\rightarrow \mathrm{\underline{Hom}}(a,c)[123X.[133X649650[1X7.4-18 AddMonoidalPreComposeMorphismWithGivenObjects[101X651652[29X[2XAddMonoidalPreComposeMorphismWithGivenObjects[102X( [3XC[103X, [3XF[103X ) [32X operation653[6XReturns:[106X [33X[0;10Ynothing[133X654655[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the656given function [23XF[123X to the category for the basic operation657[10XMonoidalPreComposeMorphismWithGivenObjects[110X. [23XF:658(\mathrm{\underline{Hom}}(a,b) \otimes659\mathrm{\underline{Hom}}(b,c),a,b,c,\mathrm{\underline{Hom}}(a,c)) \mapsto660\mathrm{MonoidalPreComposeMorphismWithGivenObjects}_{a,b,c}[123X.[133X661662[1X7.4-19 MonoidalPostComposeMorphism[101X663664[29X[2XMonoidalPostComposeMorphism[102X( [3Xa[103X, [3Xb[103X, [3Xc[103X ) [32X operation665[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{\underline{Hom}}(b,c) \otimes666\mathrm{\underline{Hom}}(a,b), \mathrm{\underline{Hom}}(a,c) )[123X.[133X667668[33X[0;0YThe arguments are three objects [23Xa,b,c[123X. The output is the postcomposition669morphism [23X\mathrm{MonoidalPostComposeMorphismWithGivenObjects}_{a,b,c}:670\mathrm{\underline{Hom}}(b,c) \otimes \mathrm{\underline{Hom}}(a,b)671\rightarrow \mathrm{\underline{Hom}}(a,c)[123X.[133X672673[1X7.4-20 MonoidalPostComposeMorphismWithGivenObjects[101X674675[29X[2XMonoidalPostComposeMorphismWithGivenObjects[102X( [3Xs[103X, [3Xa[103X, [3Xb[103X, [3Xc[103X, [3Xr[103X ) [32X operation676[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{\underline{Hom}}(b,c) \otimes677\mathrm{\underline{Hom}}(a,b), \mathrm{\underline{Hom}}(a,c) )[123X.[133X678679[33X[0;0YThe arguments are an object [23Xs = \mathrm{\underline{Hom}}(b,c) \otimes680\mathrm{\underline{Hom}}(a,b)[123X, three objects [23Xa,b,c[123X, and an object [23Xr =681\mathrm{\underline{Hom}}(a,c)[123X. The output is the postcomposition morphism682[23X\mathrm{MonoidalPostComposeMorphismWithGivenObjects}_{a,b,c}:683\mathrm{\underline{Hom}}(b,c) \otimes \mathrm{\underline{Hom}}(a,b)684\rightarrow \mathrm{\underline{Hom}}(a,c)[123X.[133X685686[1X7.4-21 AddMonoidalPostComposeMorphismWithGivenObjects[101X687688[29X[2XAddMonoidalPostComposeMorphismWithGivenObjects[102X( [3XC[103X, [3XF[103X ) [32X operation689[6XReturns:[106X [33X[0;10Ynothing[133X690691[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the692given function [23XF[123X to the category for the basic operation693[10XMonoidalPostComposeMorphismWithGivenObjects[110X. [23XF:694(\mathrm{\underline{Hom}}(b,c) \otimes695\mathrm{\underline{Hom}}(a,b),a,b,c,\mathrm{\underline{Hom}}(a,c)) \mapsto696\mathrm{MonoidalPostComposeMorphismWithGivenObjects}_{a,b,c}[123X.[133X697698[1X7.4-22 DualOnObjects[101X699700[29X[2XDualOnObjects[102X( [3Xa[103X ) [32X attribute701[6XReturns:[106X [33X[0;10Yan object[133X702703[33X[0;0YThe argument is an object [23Xa[123X. The output is its dual object [23Xa^{\vee}[123X.[133X704705[1X7.4-23 AddDualOnObjects[101X706707[29X[2XAddDualOnObjects[102X( [3XC[103X, [3XF[103X ) [32X operation708[6XReturns:[106X [33X[0;10Ynothing[133X709710[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the711given function [23XF[123X to the category for the basic operation [10XDualOnObjects[110X. [23XF: a712\mapsto a^{\vee}[123X.[133X713714[1X7.4-24 DualOnMorphisms[101X715716[29X[2XDualOnMorphisms[102X( [3Xalpha[103X ) [32X attribute717[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( b^{\vee}, a^{\vee} )[123X.[133X718719[33X[0;0YThe argument is a morphism [23X\alpha: a \rightarrow b[123X. The output is its dual720morphism [23X\alpha^{\vee}: b^{\vee} \rightarrow a^{\vee}[123X.[133X721722[1X7.4-25 DualOnMorphismsWithGivenDuals[101X723724[29X[2XDualOnMorphismsWithGivenDuals[102X( [3Xs[103X, [3Xalpha[103X, [3Xr[103X ) [32X operation725[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( b^{\vee}, a^{\vee} )[123X.[133X726727[33X[0;0YThe argument is an object [23Xs = b^{\vee}[123X, a morphism [23X\alpha: a \rightarrow b[123X,728and an object [23Xr = a^{\vee}[123X. The output is the dual morphism [23X\alpha^{\vee}:729b^{\vee} \rightarrow a^{\vee}[123X.[133X730731[1X7.4-26 AddDualOnMorphismsWithGivenDuals[101X732733[29X[2XAddDualOnMorphismsWithGivenDuals[102X( [3XC[103X, [3XF[103X ) [32X operation734[6XReturns:[106X [33X[0;10Ynothing[133X735736[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the737given function [23XF[123X to the category for the basic operation738[10XDualOnMorphismsWithGivenDuals[110X. [23XF: (b^{\vee},\alpha,a^{\vee}) \mapsto739\alpha^{\vee}[123X.[133X740741[1X7.4-27 EvaluationForDual[101X742743[29X[2XEvaluationForDual[102X( [3Xa[103X ) [32X attribute744[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a^{\vee} \otimes a, 1 )[123X.[133X745746[33X[0;0YThe argument is an object [23Xa[123X. The output is the evaluation morphism747[23X\mathrm{ev}_{a}: a^{\vee} \otimes a \rightarrow 1[123X.[133X748749[1X7.4-28 EvaluationForDualWithGivenTensorProduct[101X750751[29X[2XEvaluationForDualWithGivenTensorProduct[102X( [3Xs[103X, [3Xa[103X, [3Xr[103X ) [32X operation752[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a^{\vee} \otimes a, 1 )[123X.[133X753754[33X[0;0YThe arguments are an object [23Xs = a^{\vee} \otimes a[123X, an object [23Xa[123X, and an755object [23Xr = 1[123X. The output is the evaluation morphism [23X\mathrm{ev}_{a}:756a^{\vee} \otimes a \rightarrow 1[123X.[133X757758[1X7.4-29 AddEvaluationForDualWithGivenTensorProduct[101X759760[29X[2XAddEvaluationForDualWithGivenTensorProduct[102X( [3XC[103X, [3XF[103X ) [32X operation761[6XReturns:[106X [33X[0;10Ynothing[133X762763[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the764given function [23XF[123X to the category for the basic operation765[10XEvaluationForDualWithGivenTensorProduct[110X. [23XF: (a^{\vee} \otimes a, a, 1)766\mapsto \mathrm{ev}_{a}[123X.[133X767768[1X7.4-30 CoevaluationForDual[101X769770[29X[2XCoevaluationForDual[102X( [3Xa[103X ) [32X attribute771[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(1,a \otimes a^{\vee})[123X.[133X772773[33X[0;0YThe argument is an object [23Xa[123X. The output is the coevaluation morphism774[23X\mathrm{coev}_{a}:1 \rightarrow a \otimes a^{\vee}[123X.[133X775776[1X7.4-31 CoevaluationForDualWithGivenTensorProduct[101X777778[29X[2XCoevaluationForDualWithGivenTensorProduct[102X( [3Xs[103X, [3Xa[103X, [3Xr[103X ) [32X operation779[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(1,a \otimes a^{\vee})[123X.[133X780781[33X[0;0YThe arguments are an object [23Xs = 1[123X, an object [23Xa[123X, and an object [23Xr = a \otimes782a^{\vee}[123X. The output is the coevaluation morphism [23X\mathrm{coev}_{a}:1783\rightarrow a \otimes a^{\vee}[123X.[133X784785[1X7.4-32 AddCoevaluationForDualWithGivenTensorProduct[101X786787[29X[2XAddCoevaluationForDualWithGivenTensorProduct[102X( [3XC[103X, [3XF[103X ) [32X operation788[6XReturns:[106X [33X[0;10Ynothing[133X789790[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the791given function [23XF[123X to the category for the basic operation792[10XCoevaluationForDualWithGivenTensorProduct[110X. [23XF: (1, a, a \otimes a^{\vee})793\mapsto \mathrm{coev}_{a}[123X.[133X794795[1X7.4-33 MorphismToBidual[101X796797[29X[2XMorphismToBidual[102X( [3Xa[103X ) [32X attribute798[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(a, (a^{\vee})^{\vee})[123X.[133X799800[33X[0;0YThe argument is an object [23Xa[123X. The output is the morphism to the bidual [23Xa801\rightarrow (a^{\vee})^{\vee}[123X.[133X802803[1X7.4-34 MorphismToBidualWithGivenBidual[101X804805[29X[2XMorphismToBidualWithGivenBidual[102X( [3Xa[103X, [3Xr[103X ) [32X operation806[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(a, (a^{\vee})^{\vee})[123X.[133X807808[33X[0;0YThe arguments are an object [23Xa[123X, and an object [23Xr = (a^{\vee})^{\vee}[123X. The809output is the morphism to the bidual [23Xa \rightarrow (a^{\vee})^{\vee}[123X.[133X810811[1X7.4-35 AddMorphismToBidualWithGivenBidual[101X812813[29X[2XAddMorphismToBidualWithGivenBidual[102X( [3XC[103X, [3XF[103X ) [32X operation814[6XReturns:[106X [33X[0;10Ynothing[133X815816[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the817given function [23XF[123X to the category for the basic operation818[10XMorphismToBidualWithGivenBidual[110X. [23XF: (a, (a^{\vee})^{\vee}) \mapsto (a819\rightarrow (a^{\vee})^{\vee})[123X.[133X820821[1X7.4-36 TensorProductInternalHomCompatibilityMorphism[101X822823[29X[2XTensorProductInternalHomCompatibilityMorphism[102X( [3Xa[103X, [3Xa'[103X, [3Xb[103X, [3Xb'[103X ) [32X operation824[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{\underline{Hom}}(a,a') \otimes825\mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes826b,a' \otimes b'))[123X.[133X827828[33X[0;0YThe arguments are four objects [23Xa, a', b, b'[123X. The output is the natural829morphism830[23X\mathrm{TensorProductInternalHomCompatibilityMorphismWithGivenObjects}_{a,a',b,b'}:831\mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b')832\rightarrow \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b')[123X.[133X833834[1X7.4-37 TensorProductInternalHomCompatibilityMorphismWithGivenObjects[101X835836[29X[2XTensorProductInternalHomCompatibilityMorphismWithGivenObjects[102X( [3Xa[103X, [3Xa'[103X, [3Xb[103X, [3Xb'[103X, [3XL[103X ) [32X operation837[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{\underline{Hom}}(a,a') \otimes838\mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes839b,a' \otimes b'))[123X.[133X840841[33X[0;0YThe arguments are four objects [23Xa, a', b, b'[123X, and a list [23XL = [842\mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b'),843\mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') ][123X. The output is the844natural morphism845[23X\mathrm{TensorProductInternalHomCompatibilityMorphismWithGivenObjects}_{a,a',b,b'}:846\mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b')847\rightarrow \mathrm{\underline{Hom}}(a \otimes b,a' \otimes b')[123X.[133X848849[1X7.4-38 AddTensorProductInternalHomCompatibilityMorphismWithGivenObjects[101X850851[29X[2XAddTensorProductInternalHomCompatibilityMorphismWithGivenObjects[102X( [3XC[103X, [3XF[103X ) [32X operation852[6XReturns:[106X [33X[0;10Ynothing[133X853854[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the855given function [23XF[123X to the category for the basic operation856[10XTensorProductInternalHomCompatibilityMorphismWithGivenObjects[110X. [23XF: (857a,a',b,b', [ \mathrm{\underline{Hom}}(a,a') \otimes858\mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes b,a'859\otimes b') ]) \mapsto860\mathrm{TensorProductInternalHomCompatibilityMorphismWithGivenObjects}_{a,a',b,b'}861.[133X862863[1X7.4-39 TensorProductDualityCompatibilityMorphism[101X864865[29X[2XTensorProductDualityCompatibilityMorphism[102X( [3Xa[103X, [3Xb[103X ) [32X operation866[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a^{\vee} \otimes b^{\vee}, (a \otimes867b)^{\vee} )[123X.[133X868869[33X[0;0YThe arguments are two objects [23Xa,b[123X. The output is the natural morphism870[23X\mathrm{TensorProductDualityCompatibilityMorphismWithGivenObjects}: a^{\vee}871\otimes b^{\vee} \rightarrow (a \otimes b)^{\vee}[123X.[133X872873[1X7.4-40 TensorProductDualityCompatibilityMorphismWithGivenObjects[101X874875[29X[2XTensorProductDualityCompatibilityMorphismWithGivenObjects[102X( [3Xs[103X, [3Xa[103X, [3Xb[103X, [3Xr[103X ) [32X operation876[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a^{\vee} \otimes b^{\vee}, (a \otimes877b)^{\vee} )[123X.[133X878879[33X[0;0YThe arguments are an object [23Xs = a^{\vee} \otimes b^{\vee}[123X, two objects [23Xa,b[123X,880and an object [23Xr = (a \otimes b)^{\vee}[123X. The output is the natural morphism881[23X\mathrm{TensorProductDualityCompatibilityMorphismWithGivenObjects}_{a,b}:882a^{\vee} \otimes b^{\vee} \rightarrow (a \otimes b)^{\vee}[123X.[133X883884[1X7.4-41 AddTensorProductDualityCompatibilityMorphismWithGivenObjects[101X885886[29X[2XAddTensorProductDualityCompatibilityMorphismWithGivenObjects[102X( [3XC[103X, [3XF[103X ) [32X operation887[6XReturns:[106X [33X[0;10Ynothing[133X888889[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the890given function [23XF[123X to the category for the basic operation891[10XTensorProductDualityCompatibilityMorphismWithGivenObjects[110X. [23XF: ( a^{\vee}892\otimes b^{\vee}, a, b, (a \otimes b)^{\vee} ) \mapsto893\mathrm{TensorProductDualityCompatibilityMorphismWithGivenObjects}_{a,b}[123X.[133X894895[1X7.4-42 MorphismFromTensorProductToInternalHom[101X896897[29X[2XMorphismFromTensorProductToInternalHom[102X( [3Xa[103X, [3Xb[103X ) [32X operation898[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a^{\vee} \otimes b,899\mathrm{\underline{Hom}}(a,b) )[123X.[133X900901[33X[0;0YThe arguments are two objects [23Xa,b[123X. The output is the natural morphism902[23X\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}_{a,b}:903a^{\vee} \otimes b \rightarrow \mathrm{\underline{Hom}}(a,b)[123X.[133X904905[1X7.4-43 MorphismFromTensorProductToInternalHomWithGivenObjects[101X906907[29X[2XMorphismFromTensorProductToInternalHomWithGivenObjects[102X( [3Xs[103X, [3Xa[103X, [3Xb[103X, [3Xr[103X ) [32X operation908[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a^{\vee} \otimes b,909\mathrm{\underline{Hom}}(a,b) )[123X.[133X910911[33X[0;0YThe arguments are an object [23Xs = a^{\vee} \otimes b[123X, two objects [23Xa,b[123X, and an912object [23Xr = \mathrm{\underline{Hom}}(a,b)[123X. The output is the natural morphism913[23X\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}_{a,b}:914a^{\vee} \otimes b \rightarrow \mathrm{\underline{Hom}}(a,b)[123X.[133X915916[1X7.4-44 AddMorphismFromTensorProductToInternalHomWithGivenObjects[101X917918[29X[2XAddMorphismFromTensorProductToInternalHomWithGivenObjects[102X( [3XC[103X, [3XF[103X ) [32X operation919[6XReturns:[106X [33X[0;10Ynothing[133X920921[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the922given function [23XF[123X to the category for the basic operation923[10XMorphismFromTensorProductToInternalHomWithGivenObjects[110X. [23XF: ( a^{\vee}924\otimes b, a, b, \mathrm{\underline{Hom}}(a,b) ) \mapsto925\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}_{a,b}[123X.[133X926927[1X7.4-45 IsomorphismFromTensorProductToInternalHom[101X928929[29X[2XIsomorphismFromTensorProductToInternalHom[102X( [3Xa[103X, [3Xb[103X ) [32X operation930[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( a^{\vee} \otimes b,931\mathrm{\underline{Hom}}(a,b) )[123X.[133X932933[33X[0;0YThe arguments are two objects [23Xa,b[123X. The output is the natural morphism934[23X\mathrm{IsomorphismFromTensorProductToInternalHom}_{a,b}: a^{\vee} \otimes b935\rightarrow \mathrm{\underline{Hom}}(a,b)[123X.[133X936937[1X7.4-46 AddIsomorphismFromTensorProductToInternalHom[101X938939[29X[2XAddIsomorphismFromTensorProductToInternalHom[102X( [3XC[103X, [3XF[103X ) [32X operation940[6XReturns:[106X [33X[0;10Ynothing[133X941942[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the943given function [23XF[123X to the category for the basic operation944[10XIsomorphismFromTensorProductToInternalHom[110X. [23XF: ( a, b ) \mapsto945\mathrm{IsomorphismFromTensorProductToInternalHom}_{a,b}[123X.[133X946947[1X7.4-47 MorphismFromInternalHomToTensorProduct[101X948949[29X[2XMorphismFromInternalHomToTensorProduct[102X( [3Xa[103X, [3Xb[103X ) [32X operation950[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b),951a^{\vee} \otimes b )[123X.[133X952953[33X[0;0YThe arguments are two objects [23Xa,b[123X. The output is the inverse of954[23X\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}[123X, namely955[23X\mathrm{MorphismFromInternalHomToTensorProductWithGivenObjects}_{a,b}:956\mathrm{\underline{Hom}}(a,b) \rightarrow a^{\vee} \otimes b[123X.[133X957958[1X7.4-48 MorphismFromInternalHomToTensorProductWithGivenObjects[101X959960[29X[2XMorphismFromInternalHomToTensorProductWithGivenObjects[102X( [3Xs[103X, [3Xa[103X, [3Xb[103X, [3Xr[103X ) [32X operation961[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b),962a^{\vee} \otimes b )[123X.[133X963964[33X[0;0YThe arguments are an object [23Xs = \mathrm{\underline{Hom}}(a,b)[123X, two objects965[23Xa,b[123X, and an object [23Xr = a^{\vee} \otimes b[123X. The output is the inverse of966[23X\mathrm{MorphismFromTensorProductToInternalHomWithGivenObjects}[123X, namely967[23X\mathrm{MorphismFromInternalHomToTensorProductWithGivenObjects}_{a,b}:968\mathrm{\underline{Hom}}(a,b) \rightarrow a^{\vee} \otimes b[123X.[133X969970[1X7.4-49 AddMorphismFromInternalHomToTensorProductWithGivenObjects[101X971972[29X[2XAddMorphismFromInternalHomToTensorProductWithGivenObjects[102X( [3XC[103X, [3XF[103X ) [32X operation973[6XReturns:[106X [33X[0;10Ynothing[133X974975[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the976given function [23XF[123X to the category for the basic operation977[10XMorphismFromInternalHomToTensorProductWithGivenObjects[110X. [23XF: (978\mathrm{\underline{Hom}}(a,b),a,b,a^{\vee} \otimes b ) \mapsto979\mathrm{MorphismFromInternalHomToTensorProductWithGivenObjects}_{a,b}[123X.[133X980981[1X7.4-50 IsomorphismFromInternalHomToTensorProduct[101X982983[29X[2XIsomorphismFromInternalHomToTensorProduct[102X( [3Xa[103X, [3Xb[103X ) [32X operation984[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{\underline{Hom}}(a,b),985a^{\vee} \otimes b )[123X.[133X986987[33X[0;0YThe arguments are two objects [23Xa,b[123X. The output is the inverse of988[23X\mathrm{IsomorphismFromTensorProductToInternalHom}[123X, namely989[23X\mathrm{IsomorphismFromInternalHomToTensorProduct}_{a,b}:990\mathrm{\underline{Hom}}(a,b) \rightarrow a^{\vee} \otimes b[123X.[133X991992[1X7.4-51 AddIsomorphismFromInternalHomToTensorProduct[101X993994[29X[2XAddIsomorphismFromInternalHomToTensorProduct[102X( [3XC[103X, [3XF[103X ) [32X operation995[6XReturns:[106X [33X[0;10Ynothing[133X996997[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the998given function [23XF[123X to the category for the basic operation999[10XIsomorphismFromInternalHomToTensorProduct[110X. [23XF: ( a,b ) \mapsto1000\mathrm{IsomorphismFromInternalHomToTensorProduct}_{a,b}[123X.[133X10011002[1X7.4-52 TraceMap[101X10031004[29X[2XTraceMap[102X( [3Xalpha[103X ) [32X attribute1005[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(1,1)[123X.[133X10061007[33X[0;0YThe argument is a morphism [23X\alpha[123X. The output is the trace morphism1008[23X\mathrm{trace}_{\alpha}: 1 \rightarrow 1[123X.[133X10091010[1X7.4-53 AddTraceMap[101X10111012[29X[2XAddTraceMap[102X( [3XC[103X, [3XF[103X ) [32X operation1013[6XReturns:[106X [33X[0;10Ynothing[133X10141015[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1016given function [23XF[123X to the category for the basic operation [10XTraceMap[110X. [23XF: \alpha1017\mapsto \mathrm{trace}_{\alpha}[123X[133X10181019[1X7.4-54 RankMorphism[101X10201021[29X[2XRankMorphism[102X( [3Xa[103X ) [32X attribute1022[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(1,1)[123X.[133X10231024[33X[0;0YThe argument is an object [23Xa[123X. The output is the rank morphism1025[23X\mathrm{rank}_a: 1 \rightarrow 1[123X.[133X10261027[1X7.4-55 AddRankMorphism[101X10281029[29X[2XAddRankMorphism[102X( [3XC[103X, [3XF[103X ) [32X operation1030[6XReturns:[106X [33X[0;10Ynothing[133X10311032[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1033given function [23XF[123X to the category for the basic operation [10XRankMorphism[110X. [23XF: a1034\mapsto \mathrm{rank}_{a}[123X[133X10351036[1X7.4-56 IsomorphismFromDualToInternalHom[101X10371038[29X[2XIsomorphismFromDualToInternalHom[102X( [3Xa[103X ) [32X attribute1039[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(a^{\vee}, \mathrm{Hom}(a,1))[123X.[133X10401041[33X[0;0YThe argument is an object [23Xa[123X. The output is the isomorphism1042[23X\mathrm{IsomorphismFromDualToInternalHom}_{a}: a^{\vee} \rightarrow1043\mathrm{Hom}(a,1)[123X.[133X10441045[1X7.4-57 AddIsomorphismFromDualToInternalHom[101X10461047[29X[2XAddIsomorphismFromDualToInternalHom[102X( [3XC[103X, [3XF[103X ) [32X operation1048[6XReturns:[106X [33X[0;10Ynothing[133X10491050[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1051given function [23XF[123X to the category for the basic operation1052[10XIsomorphismFromDualToInternalHom[110X. [23XF: a \mapsto1053\mathrm{IsomorphismFromDualToInternalHom}_{a}[123X[133X10541055[1X7.4-58 IsomorphismFromInternalHomToDual[101X10561057[29X[2XIsomorphismFromInternalHomToDual[102X( [3Xa[103X ) [32X attribute1058[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{Hom}(a,1), a^{\vee})[123X.[133X10591060[33X[0;0YThe argument is an object [23Xa[123X. The output is the isomorphism1061[23X\mathrm{IsomorphismFromInternalHomToDual}_{a}: \mathrm{Hom}(a,1) \rightarrow1062a^{\vee}[123X.[133X10631064[1X7.4-59 AddIsomorphismFromInternalHomToDual[101X10651066[29X[2XAddIsomorphismFromInternalHomToDual[102X( [3XC[103X, [3XF[103X ) [32X operation1067[6XReturns:[106X [33X[0;10Ynothing[133X10681069[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1070given function [23XF[123X to the category for the basic operation1071[10XIsomorphismFromInternalHomToDual[110X. [23XF: a \mapsto1072\mathrm{IsomorphismFromInternalHomToDual}_{a}[123X[133X10731074[1X7.4-60 UniversalPropertyOfDual[101X10751076[29X[2XUniversalPropertyOfDual[102X( [3Xt[103X, [3Xa[103X, [3Xalpha[103X ) [32X operation1077[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(t, a^{\vee})[123X.[133X10781079[33X[0;0YThe arguments are two objects [23Xt,a[123X, and a morphism [23X\alpha: t \otimes a1080\rightarrow 1[123X. The output is the morphism [23Xt \rightarrow a^{\vee}[123X given by1081the universal property of [23Xa^{\vee}[123X.[133X10821083[1X7.4-61 AddUniversalPropertyOfDual[101X10841085[29X[2XAddUniversalPropertyOfDual[102X( [3XC[103X, [3XF[103X ) [32X operation1086[6XReturns:[106X [33X[0;10Ynothing[133X10871088[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1089given function [23XF[123X to the category for the basic operation1090[10XUniversalPropertyOfDual[110X. [23XF: ( t,a,\alpha: t \otimes a \rightarrow 1 )1091\mapsto ( t \rightarrow a^{\vee} )[123X.[133X10921093[1X7.4-62 LambdaIntroduction[101X10941095[29X[2XLambdaIntroduction[102X( [3Xalpha[103X ) [32X attribute1096[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( 1, \mathrm{\underline{Hom}}(a,b) )[123X.[133X10971098[33X[0;0YThe argument is a morphism [23X\alpha: a \rightarrow b[123X. The output is the1099corresponding morphism [23X1 \rightarrow \mathrm{\underline{Hom}}(a,b)[123X under the1100tensor hom adjunction.[133X11011102[1X7.4-63 AddLambdaIntroduction[101X11031104[29X[2XAddLambdaIntroduction[102X( [3XC[103X, [3XF[103X ) [32X operation1105[6XReturns:[106X [33X[0;10Ynothing[133X11061107[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1108given function [23XF[123X to the category for the basic operation [10XLambdaIntroduction[110X.1109[23XF: ( \alpha: a \rightarrow b ) \mapsto ( 1 \rightarrow1110\mathrm{\underline{Hom}}(a,b) )[123X.[133X11111112[1X7.4-64 LambdaElimination[101X11131114[29X[2XLambdaElimination[102X( [3Xa[103X, [3Xb[103X, [3Xalpha[103X ) [32X operation1115[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(a,b)[123X.[133X11161117[33X[0;0YThe arguments are two objects [23Xa,b[123X, and a morphism [23X\alpha: 1 \rightarrow1118\mathrm{\underline{Hom}}(a,b)[123X. The output is a morphism [23Xa \rightarrow b[123X1119corresponding to [23X\alpha[123X under the tensor hom adjunction.[133X11201121[1X7.4-65 AddLambdaElimination[101X11221123[29X[2XAddLambdaElimination[102X( [3XC[103X, [3XF[103X ) [32X operation1124[6XReturns:[106X [33X[0;10Ynothing[133X11251126[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1127given function [23XF[123X to the category for the basic operation [10XLambdaElimination[110X.1128[23XF: ( a,b,\alpha: 1 \rightarrow \mathrm{\underline{Hom}}(a,b) ) \mapsto ( a1129\rightarrow b )[123X.[133X11301131[1X7.4-66 IsomorphismFromObjectToInternalHom[101X11321133[29X[2XIsomorphismFromObjectToInternalHom[102X( [3Xa[103X ) [32X attribute1134[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(a, \mathrm{\underline{Hom}}(1,a))[123X.[133X11351136[33X[0;0YThe argument is an object [23Xa[123X. The output is the natural isomorphism [23Xa1137\rightarrow \mathrm{\underline{Hom}}(1,a)[123X.[133X11381139[1X7.4-67 IsomorphismFromObjectToInternalHomWithGivenInternalHom[101X11401141[29X[2XIsomorphismFromObjectToInternalHomWithGivenInternalHom[102X( [3Xa[103X, [3Xr[103X ) [32X operation1142[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(a, \mathrm{\underline{Hom}}(1,a))[123X.[133X11431144[33X[0;0YThe argument is an object [23Xa[123X, and an object [23Xr =1145\mathrm{\underline{Hom}}(1,a)[123X. The output is the natural isomorphism [23Xa1146\rightarrow \mathrm{\underline{Hom}}(1,a)[123X.[133X11471148[1X7.4-68 AddIsomorphismFromObjectToInternalHomWithGivenInternalHom[101X11491150[29X[2XAddIsomorphismFromObjectToInternalHomWithGivenInternalHom[102X( [3XC[103X, [3XF[103X ) [32X operation1151[6XReturns:[106X [33X[0;10Ynothing[133X11521153[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1154given function [23XF[123X to the category for the basic operation1155[10XIsomorphismFromObjectToInternalHomWithGivenInternalHom[110X. [23XF: ( a,1156\mathrm{\underline{Hom}}(1,a) ) \mapsto ( a \rightarrow1157\mathrm{\underline{Hom}}(1,a) )[123X.[133X11581159[1X7.4-69 IsomorphismFromInternalHomToObject[101X11601161[29X[2XIsomorphismFromInternalHomToObject[102X( [3Xa[103X ) [32X attribute1162[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{\underline{Hom}}(1,a),a)[123X.[133X11631164[33X[0;0YThe argument is an object [23Xa[123X. The output is the natural isomorphism1165[23X\mathrm{\underline{Hom}}(1,a) \rightarrow a[123X.[133X11661167[1X7.4-70 IsomorphismFromInternalHomToObjectWithGivenInternalHom[101X11681169[29X[2XIsomorphismFromInternalHomToObjectWithGivenInternalHom[102X( [3Xa[103X, [3Xs[103X ) [32X operation1170[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{\underline{Hom}}(1,a),a)[123X.[133X11711172[33X[0;0YThe argument is an object [23Xa[123X, and an object [23Xs =1173\mathrm{\underline{Hom}}(1,a)[123X. The output is the natural isomorphism1174[23X\mathrm{\underline{Hom}}(1,a) \rightarrow a[123X.[133X11751176[1X7.4-71 AddIsomorphismFromInternalHomToObjectWithGivenInternalHom[101X11771178[29X[2XAddIsomorphismFromInternalHomToObjectWithGivenInternalHom[102X( [3XC[103X, [3XF[103X ) [32X operation1179[6XReturns:[106X [33X[0;10Ynothing[133X11801181[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1182given function [23XF[123X to the category for the basic operation1183[10XIsomorphismFromInternalHomToObjectWithGivenInternalHom[110X. [23XF: ( a,1184\mathrm{\underline{Hom}}(1,a) ) \mapsto ( \mathrm{\underline{Hom}}(1,a)1185\rightarrow a )[123X.[133X118611871188[1X7.5 [33X[0;0YRigid Symmetric Closed Monoidal Categories[133X[101X11891190[33X[0;0YA symmetric closed monoidal category [23X\mathbf{C}[123X satisfying[133X11911192[30X [33X[0;6Ythe natural morphism [23X\underline{\mathrm{Hom}}(a_1,b_1) \otimes1193\underline{\mathrm{Hom}}(a_2,b_2) \rightarrow1194\underline{\mathrm{Hom}}(a_1 \otimes a_2,b_1 \otimes b_2)[123X is an1195isomorphism,[133X11961197[30X [33X[0;6Ythe natural morphism [23Xa \rightarrow1198\underline{\mathrm{Hom}}(\underline{\mathrm{Hom}}(a, 1), 1)[123X is an1199isomorphism[133X12001201[33X[0;0Yis called a [13Xrigid symmetric closed monoidal category[113X.[133X12021203[1X7.5-1 TensorProductInternalHomCompatibilityMorphismInverse[101X12041205[29X[2XTensorProductInternalHomCompatibilityMorphismInverse[102X( [3Xa[103X, [3Xa'[103X, [3Xb[103X, [3Xb'[103X ) [32X operation1206[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{\underline{Hom}}(a \otimes1207b,a' \otimes b'), \mathrm{\underline{Hom}}(a,a') \otimes1208\mathrm{\underline{Hom}}(b,b'))[123X.[133X12091210[33X[0;0YThe arguments are four objects [23Xa, a', b, b'[123X. The output is the natural1211morphism1212[23X\mathrm{TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects}_{a,a',b,b'}:1213\mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') \rightarrow1214\mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b')[123X.[133X12151216[1X7.5-2 TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects[101X12171218[29X[2XTensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects[102X( [3Xa[103X, [3Xa'[103X, [3Xb[103X, [3Xb'[103X, [3XL[103X ) [32X operation1219[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{\underline{Hom}}(a \otimes1220b,a' \otimes b'), \mathrm{\underline{Hom}}(a,a') \otimes1221\mathrm{\underline{Hom}}(b,b'))[123X.[133X12221223[33X[0;0YThe arguments are four objects [23Xa, a', b, b'[123X, and a list [23XL = [1224\mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b'),1225\mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') ][123X. The output is the1226natural morphism1227[23X\mathrm{TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects}_{a,a',b,b'}:1228\mathrm{\underline{Hom}}(a \otimes b,a' \otimes b') \rightarrow1229\mathrm{\underline{Hom}}(a,a') \otimes \mathrm{\underline{Hom}}(b,b')[123X.[133X12301231[1X7.5-3 AddTensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects[101X12321233[29X[2XAddTensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects[102X( [3XC[103X, [3XF[103X ) [32X operation1234[6XReturns:[106X [33X[0;10Ynothing[133X12351236[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1237given function [23XF[123X to the category for the basic operation1238[10XTensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects[110X. [23XF: (1239a,a',b,b', [ \mathrm{\underline{Hom}}(a,a') \otimes1240\mathrm{\underline{Hom}}(b,b'), \mathrm{\underline{Hom}}(a \otimes b,a'1241\otimes b') ]) \mapsto1242\mathrm{TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects}_{a,a',b,b'}1243.[133X12441245[1X7.5-4 MorphismFromBidual[101X12461247[29X[2XMorphismFromBidual[102X( [3Xa[103X ) [32X attribute1248[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}((a^{\vee})^{\vee},a)[123X.[133X12491250[33X[0;0YThe argument is an object [23Xa[123X. The output is the inverse of the morphism to1251the bidual [23X(a^{\vee})^{\vee} \rightarrow a[123X.[133X12521253[1X7.5-5 MorphismFromBidualWithGivenBidual[101X12541255[29X[2XMorphismFromBidualWithGivenBidual[102X( [3Xa[103X, [3Xs[103X ) [32X operation1256[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}((a^{\vee})^{\vee},a)[123X.[133X12571258[33X[0;0YThe argument is an object [23Xa[123X, and an object [23Xs = (a^{\vee})^{\vee}[123X. The output1259is the inverse of the morphism to the bidual [23X(a^{\vee})^{\vee} \rightarrow1260a[123X.[133X12611262[1X7.5-6 AddMorphismFromBidualWithGivenBidual[101X12631264[29X[2XAddMorphismFromBidualWithGivenBidual[102X( [3XC[103X, [3XF[103X ) [32X operation1265[6XReturns:[106X [33X[0;10Ynothing[133X12661267[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1268given function [23XF[123X to the category for the basic operation1269[10XMorphismFromBidualWithGivenBidual[110X. [23XF: (a, (a^{\vee})^{\vee}) \mapsto1270((a^{\vee})^{\vee} \rightarrow a)[123X.[133X1271127212731274