GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
LoadPackage( "CAP" );
LoadPackage( "DeductiveSystemForCAP" );
LoadPackage( "MatricesForHomalg" );
#ProfileFunctionsInGlobalVariables( true );
#ProfileOperationsAndMethods( true );
#ProfileGlobalFunctions( true );
ProfileMethods( IsEqualForCache );
###################################
##
## Types and Representations
##
###################################
DeclareRepresentation( "IsHomalgRationalVectorSpaceRep",
IsCapCategoryObjectRep,
[ ] );
BindGlobal( "TheTypeOfHomalgRationalVectorSpaces",
NewType( TheFamilyOfCapCategoryObjects,
IsHomalgRationalVectorSpaceRep ) );
DeclareRepresentation( "IsHomalgRationalVectorSpaceMorphismRep",
IsCapCategoryMorphismRep,
[ ] );
BindGlobal( "TheTypeOfHomalgRationalVectorSpaceMorphism",
NewType( TheFamilyOfCapCategoryMorphisms,
IsHomalgRationalVectorSpaceMorphismRep ) );
###################################
##
## Attributes
##
###################################
DeclareAttribute( "Dimension",
IsHomalgRationalVectorSpaceRep );
#######################################
##
## Operations
##
#######################################
DeclareOperation( "QVectorSpace",
[ IsInt ] );
DeclareOperation( "VectorSpaceMorphism",
[ IsHomalgRationalVectorSpaceRep, IsObject, IsHomalgRationalVectorSpaceRep ] );
vecspaces := CreateCapCategory( "VectorSpaces" );
SetIsAbelianCategory( vecspaces, true );
VECTORSPACES_FIELD := HomalgFieldOfRationals( );
#######################################
##
## Categorical Implementations
##
#######################################
##
InstallMethod( QVectorSpace,
[ IsInt ],
function( dim )
local space;
space := rec( );
ObjectifyWithAttributes( space, TheTypeOfHomalgRationalVectorSpaces,
Dimension, dim
);
# is this the right place?
Add( vecspaces, space );
return space;
end );
##
InstallMethod( VectorSpaceMorphism,
[ IsHomalgRationalVectorSpaceRep, IsObject, IsHomalgRationalVectorSpaceRep ],
function( source, matrix, range )
local morphism;
if not IsHomalgMatrix( matrix ) then
morphism := HomalgMatrix( matrix, Dimension( source ), Dimension( range ), VECTORSPACES_FIELD );
else
morphism := matrix;
fi;
morphism := rec( morphism := morphism );
ObjectifyWithAttributes( morphism, TheTypeOfHomalgRationalVectorSpaceMorphism,
Source, source,
Range, range
);
Add( vecspaces, morphism );
return morphism;
end );
AddIsEqualForMorphisms( vecspaces,
function( a, b )
return a!.morphism = b!.morphism;
end );
AddIsCongruentForMorphisms( vecspaces,
function( a, b )
return a!.morphism = b!.morphism;
end );
AddIsZeroForMorphisms( vecspaces,
function( a )
return IsZero( a!.morphism );
end );
AddAdditionForMorphisms( vecspaces,
function( a, b )
return VectorSpaceMorphism( Source( a ), a!.morphism + b!.morphism, Range( a ) );
end );
AddAdditiveInverseForMorphisms( vecspaces,
function( a )
return VectorSpaceMorphism( Source( a ), - a!.morphism, Range( a ) );
end );
AddZeroMorphism( vecspaces,
function( a, b )
return VectorSpaceMorphism( a, HomalgZeroMatrix( Dimension( a ), Dimension( b ), VECTORSPACES_FIELD ), b );
end );
##
AddIdentityMorphism( vecspaces,
function( obj )
return VectorSpaceMorphism( obj, HomalgIdentityMatrix( Dimension( obj ), VECTORSPACES_FIELD ), obj );
end );
##
AddPreCompose( vecspaces,
function( mor_left, mor_right )
local composition;
composition := mor_left!.morphism * mor_right!.morphism;
return VectorSpaceMorphism( Source( mor_left ), composition, Range( mor_right ) );
end );
##
AddZeroObject( vecspaces,
function( )
return QVectorSpace( 0 );
end );
##
AddLiftAlongMonomorphism( vecspaces,
function( monomorphism, test_morphism )
return VectorSpaceMorphism( Source( test_morphism ), RightDivide( test_morphism!.morphism, monomorphism!.morphism ), Source( monomorphism ) );
end );
##
AddColiftAlongEpimorphism( vecspaces,
function( epimorphism, test_morphism )
return VectorSpaceMorphism( Range( epimorphism ), LeftDivide( epimorphism!.morphism, test_morphism!.morphism ), Range( test_morphism ) );
end );
##
AddKernelObject( vecspaces,
function( morphism )
local homalg_matrix;
homalg_matrix := morphism!.morphism;
return QVectorSpace( NrRows( homalg_matrix ) - RowRankOfMatrix( homalg_matrix ) );
end );
##
AddKernelEmbedding( vecspaces,
function( morphism )
local kernel_emb, kernel_obj;
kernel_emb := SyzygiesOfRows( morphism!.morphism );
kernel_obj := QVectorSpace( NrRows( kernel_emb ) );
return VectorSpaceMorphism( kernel_obj, kernel_emb, Source( morphism ) );
end );
##
AddKernelEmbeddingWithGivenKernelObject( vecspaces,
function( morphism, kernel )
local kernel_emb;
kernel_emb := SyzygiesOfRows( morphism!.morphism );
return VectorSpaceMorphism( kernel, kernel_emb, Source( morphism ) );
end );
##
AddCokernelObject( vecspaces,
function( morphism )
local homalg_matrix;
homalg_matrix := morphism!.morphism;
return QVectorSpace( NrColumns( homalg_matrix ) - RowRankOfMatrix( homalg_matrix ) );
end );
##
AddCokernelProjection( vecspaces,
function( morphism )
local cokernel_proj, cokernel_obj;
cokernel_proj := SyzygiesOfColumns( morphism!.morphism );
cokernel_obj := QVectorSpace( NrColumns( cokernel_proj ) );
return VectorSpaceMorphism( Range( morphism ), cokernel_proj, cokernel_obj );
end );
##
AddCokernelProjectionWithGivenCokernelObject( vecspaces,
function( morphism, cokernel )
local cokernel_proj;
cokernel_proj := SyzygiesOfColumns( morphism!.morphism );
return VectorSpaceMorphism( Range( morphism ), cokernel_proj, cokernel );
end );
# ##
# AddCoproduct( vecspaces,
#
# function( object_product_list )
# local dim;
#
# dim := Sum( List( object_product_list, c -> Dimension( c ) ) );
#
# return QVectorSpace( dim );
#
# end );
##
## the user may assume that Length( object_product_list ) > 1
AddInjectionOfCofactorOfDirectSum( vecspaces,
function( object_product_list, injection_number )
local components, dim, dim_pre, dim_post, dim_cofactor, coproduct, number_of_objects, injection_of_cofactor;
components := object_product_list;
number_of_objects := Length( components );
dim := Sum( components, c -> Dimension( c ) );
dim_pre := Sum( components{ [ 1 .. injection_number - 1 ] }, c -> Dimension( c ) );
dim_post := Sum( components{ [ injection_number + 1 .. number_of_objects ] }, c -> Dimension( c ) );
dim_cofactor := Dimension( object_product_list[ injection_number ] );
coproduct := QVectorSpace( dim );
injection_of_cofactor := HomalgZeroMatrix( dim_cofactor, dim_pre ,VECTORSPACES_FIELD );
injection_of_cofactor := UnionOfColumns( injection_of_cofactor,
HomalgIdentityMatrix( dim_cofactor, VECTORSPACES_FIELD ) );
injection_of_cofactor := UnionOfColumns( injection_of_cofactor,
HomalgZeroMatrix( dim_cofactor, dim_post, VECTORSPACES_FIELD ) );
return VectorSpaceMorphism( object_product_list[ injection_number ], injection_of_cofactor, coproduct );
end );
##
## the user may assume that Length( object_product_list ) > 1
AddInjectionOfCofactorOfDirectSumWithGivenDirectSum( vecspaces,
function( object_product_list, injection_number, coproduct )
local components, dim_pre, dim_post, dim_cofactor, number_of_objects, injection_of_cofactor;
components := object_product_list;
number_of_objects := Length( object_product_list );
dim_pre := Sum( components{ [ 1 .. injection_number - 1 ] }, c -> Dimension( c ) );
dim_post := Sum( components{ [ injection_number + 1 .. number_of_objects ] }, c -> Dimension( c ) );
dim_cofactor := Dimension( object_product_list[ injection_number ] );
injection_of_cofactor := HomalgZeroMatrix( dim_cofactor, dim_pre ,VECTORSPACES_FIELD );
injection_of_cofactor := UnionOfColumns( injection_of_cofactor,
HomalgIdentityMatrix( dim_cofactor, VECTORSPACES_FIELD ) );
injection_of_cofactor := UnionOfColumns( injection_of_cofactor,
HomalgZeroMatrix( dim_cofactor, dim_post, VECTORSPACES_FIELD ) );
return VectorSpaceMorphism( object_product_list[ injection_number ], injection_of_cofactor, coproduct );
end );
##
AddUniversalMorphismFromDirectSum( vecspaces,
function( diagram, sink )
local dim, coproduct, components, universal_morphism, morphism;
components := sink;
dim := Sum( components, c -> Dimension( Source( c ) ) );
coproduct := QVectorSpace( dim );
universal_morphism := sink[1]!.morphism;
for morphism in components{ [ 2 .. Length( components ) ] } do
universal_morphism := UnionOfRows( universal_morphism, morphism!.morphism );
od;
return VectorSpaceMorphism( coproduct, universal_morphism, Range( sink[1] ) );
end );
##
AddUniversalMorphismFromDirectSumWithGivenDirectSum( vecspaces,
function( diagram, sink, coproduct )
local components, universal_morphism, morphism;
components := sink;
universal_morphism := sink[1]!.morphism;
for morphism in components{ [ 2 .. Length( components ) ] } do
universal_morphism := UnionOfRows( universal_morphism, morphism!.morphism );
od;
return VectorSpaceMorphism( coproduct, universal_morphism, Range( sink[1] ) );
end );
##
AddDirectSum( vecspaces,
function( object_product_list )
local dim;
dim := Sum( List( object_product_list, c -> Dimension( c ) ) );
return QVectorSpace( dim );
end );
# ##
# AddDirectProduct( vecspaces,
#
# function( object_product_list )
# local dim;
#
# dim := Sum( List( object_product_list, c -> Dimension( c ) ) );
#
# return QVectorSpace( dim );
#
# end );
#
# the user may assume that Length( object_product_list ) > 1
AddProjectionInFactorOfDirectSum( vecspaces,
function( object_product_list, projection_number )
local components, dim, dim_pre, dim_post, dim_factor, direct_product, number_of_objects, projection_in_factor;
components := object_product_list;
number_of_objects := Length( components );
dim := Sum( components, c -> Dimension( c ) );
dim_pre := Sum( components{ [ 1 .. projection_number - 1 ] }, c -> Dimension( c ) );
dim_post := Sum( components{ [ projection_number + 1 .. number_of_objects ] }, c -> Dimension( c ) );
dim_factor := Dimension( object_product_list[ projection_number ] );
direct_product := QVectorSpace( dim );
projection_in_factor := HomalgZeroMatrix( dim_pre, dim_factor, VECTORSPACES_FIELD );
projection_in_factor := UnionOfRows( projection_in_factor,
HomalgIdentityMatrix( dim_factor, VECTORSPACES_FIELD ) );
projection_in_factor := UnionOfRows( projection_in_factor,
HomalgZeroMatrix( dim_post, dim_factor, VECTORSPACES_FIELD ) );
return VectorSpaceMorphism( direct_product, projection_in_factor, object_product_list[ projection_number ] );
end );
##
## the user may assume that Length( object_product_list ) > 1
AddProjectionInFactorOfDirectSumWithGivenDirectSum( vecspaces,
function( object_product_list, projection_number, direct_product )
local components, dim_pre, dim_post, dim_factor, number_of_objects, projection_in_factor;
components := object_product_list;
number_of_objects := Length( components );
dim_pre := Sum( components{ [ 1 .. projection_number - 1 ] }, c -> Dimension( c ) );
dim_post := Sum( components{ [ projection_number + 1 .. number_of_objects ] }, c -> Dimension( c ) );
dim_factor := Dimension( object_product_list[ projection_number ] );
projection_in_factor := HomalgZeroMatrix( dim_pre, dim_factor, VECTORSPACES_FIELD );
projection_in_factor := UnionOfRows( projection_in_factor,
HomalgIdentityMatrix( dim_factor, VECTORSPACES_FIELD ) );
projection_in_factor := UnionOfRows( projection_in_factor,
HomalgZeroMatrix( dim_post, dim_factor, VECTORSPACES_FIELD ) );
return VectorSpaceMorphism( direct_product, projection_in_factor, object_product_list[ projection_number ] );
end );
AddUniversalMorphismIntoDirectSum( vecspaces,
function( diagram, sink )
local dim, direct_product, components, universal_morphism, morphism;
components := sink;
dim := Sum( components, c -> Dimension( Range( c ) ) );
direct_product := QVectorSpace( dim );
universal_morphism := sink[1]!.morphism;
for morphism in components{ [ 2 .. Length( components ) ] } do
universal_morphism := UnionOfColumns( universal_morphism, morphism!.morphism );
od;
return VectorSpaceMorphism( Source( sink[1] ), universal_morphism, direct_product );
end );
AddUniversalMorphismIntoDirectSumWithGivenDirectSum( vecspaces,
function( diagram, sink, direct_product )
local components, universal_morphism, morphism;
components := sink;
universal_morphism := sink[1]!.morphism;
for morphism in components{ [ 2 .. Length( components ) ] } do
universal_morphism := UnionOfColumns( universal_morphism, morphism!.morphism );
od;
return VectorSpaceMorphism( Source( sink[1] ), universal_morphism, direct_product );
end );
##
AddUniversalMorphismIntoZeroObject( vecspaces,
function( sink )
local morphism;
morphism := VectorSpaceMorphism( sink, HomalgZeroMatrix( Dimension( sink ), 0, VECTORSPACES_FIELD ), QVectorSpace( 0 ) );
return morphism;
end );
##
AddUniversalMorphismIntoZeroObjectWithGivenZeroObject( vecspaces,
function( sink, terminal_object )
local morphism;
morphism := VectorSpaceMorphism( sink, HomalgZeroMatrix( Dimension( sink ), 0, VECTORSPACES_FIELD ), terminal_object );
return morphism;
end );
##
AddZeroObject( vecspaces,
function( )
return QVectorSpace( 0 );
end );
##
AddUniversalMorphismFromZeroObject( vecspaces,
function( source )
local morphism;
morphism := VectorSpaceMorphism( QVectorSpace( 0 ), HomalgZeroMatrix( 0, Dimension( source ), VECTORSPACES_FIELD ), source );
return morphism;
end );
##
AddUniversalMorphismFromZeroObjectWithGivenZeroObject( vecspaces,
function( source, initial_object )
local morphism;
morphism := VectorSpaceMorphism( initial_object, HomalgZeroMatrix( 0, Dimension( source ), VECTORSPACES_FIELD ), source );
return morphism;
end );
##
AddIsWellDefinedForObjects( vecspaces,
function( vectorspace )
return IsHomalgRationalVectorSpaceRep( vectorspace ) and Dimension( vectorspace ) >= 0;
end );
##
AddIsWellDefinedForMorphisms( vecspaces,
function( morphism )
local matrix;
if not IsHomalgRationalVectorSpaceMorphismRep( morphism ) then
return false;
fi;
matrix := morphism!.morphism;
return IsHomalgMatrix( matrix )
and NrRows( matrix ) = Dimension( Source( morphism ) )
and NrColumns( matrix ) = Dimension( Range( morphism ) );
end );
#
# AddIsZeroForObjects( vecspaces,
#
# function( obj )
#
# return Dimension( obj ) = 0;
#
# end );
#
# AddIsMonomorphism( vecspaces,
#
# function( morphism )
#
# return RowRankOfMatrix( morphism!.morphism ) = Dimension( Source( morphism ) );
#
# end );
#
# AddIsEpimorphism( vecspaces,
#
# function( morphism )
#
# return ColumnRankOfMatrix( morphism!.morphism ) = Dimension( Range( morphism ) );
#
# end );
#
# AddIsIsomorphism( vecspaces,
#
# function( morphism )
#
# return Dimension( Range( morphism ) ) = Dimension( Source( morphism ) )
# and ColumnRankOfMatrix( morphism!.morphism ) = Dimension( Range( morphism ) );
#
# end );
# ##
# AddImageObject( vecspaces,
#
# function( morphism )
#
# return QVectorSpace( RowRankOfMatrix( morphism!.morphism ) );
#
# end );
AddIsEqualForObjects( vecspaces,
function( vecspace_1, vecspace_2 )
return Dimension( vecspace_1 ) = Dimension( vecspace_2 );
end );
Finalize( vecspaces );
#######################################
##
## View and Display
##
#######################################
InstallMethod( ViewObj,
[ IsHomalgRationalVectorSpaceRep ],
function( obj )
Print( "<A rational vector space of dimension ", String( Dimension( obj ) ), ">" );
end );
InstallMethod( ViewObj,
[ IsHomalgRationalVectorSpaceMorphismRep ],
function( obj )
Print( "A rational vector space homomorphism with matrix: \n" );
#
# Print( String( obj!.morphism ) );
Display( obj!.morphism );
end );
#######################################
##
## Test
##
#######################################
T := QVectorSpace( 2 );
B := QVectorSpace( 2 );
A := QVectorSpace( 1 );
C := QVectorSpace( 3 );
D := QVectorSpace( 1 );
f := VectorSpaceMorphism( B, [ [ 1 ], [ 1 ] ], A );
g := VectorSpaceMorphism( C, [ [ 1 ], [ -1 ], [ 1 ] ], A );
t1 := VectorSpaceMorphism( D, [ [ 1, 1 ] ], B );
t2 := VectorSpaceMorphism( D, [ [ 1, 0, 1 ] ], C );
# KernelLift Test:
tau := VectorSpaceMorphism( T, [ [ 1, 1 ], [ 1, 1 ] ], B );
theta := VectorSpaceMorphism( A, [ [ 2, -2 ] ], T );
# KernelLift( tau, theta );
#
# # Inverse Test
# alpha := VectorSpaceMorphism( T, [ [ 1, 2 ], [ 3, 4 ] ], B );
#
# Inverse( alpha );
#
# #CokernelColift Test:
# tau2 := VectorSpaceMorphism( B, [ [ 1, 1 ], [ 1, 1 ] ], T );
#
# CokernelColift( theta, tau2 );
# Universal morphism of direct product
alpha := VectorSpaceMorphism( T, [ [ 3 ], [ 4 ] ], A );
beta := VectorSpaceMorphism( T, [ [ 1, 1 ], [ 1, 1 ] ], B );
gamma := VectorSpaceMorphism( T, [ [ 1, 2 ], [ 3, 4 ] ], B );
#######################################
##
## Snake-Lemma test
##
#######################################
eta := VectorSpaceMorphism( T, [ [ 1, 1 ], [ 2, 2 ] ], T );
eta := InDeductiveSystem( eta );
SetIsAbelianCategory( CapCategory( eta ), true );
#######################################
##
## Functorial methods tests
##
#######################################
A := QVectorSpace( 2 );
A_p := QVectorSpace( 2 );
B := QVectorSpace( 2 );
B_p := QVectorSpace( 2 );
alpha := VectorSpaceMorphism( A, [ [ 0, 0 ], [ 0, 1 ] ], B );
alpha_p := VectorSpaceMorphism( A_p, [ [ 0, 0 ], [ 0, 1 ] ], B_p );
mu := VectorSpaceMorphism( A, [ [ 1, 0 ], [ 0, 0 ] ], A_p );
nu := VectorSpaceMorphism( B, [ [ 1, 0 ], [ 0, 0 ] ], B_p );
# KernelObjectFunctorial( mu, alpha, nu );
#######################################
##
## Functors
##
#######################################
Tensor_Product_For_VecSpaces := CapFunctor( "Tensor_Product_For_VecSpaces", Product( vecspaces, vecspaces ), vecspaces );
AddObjectFunction( Tensor_Product_For_VecSpaces,
function( vecspace_pair )
return QVectorSpace( Dimension( vecspace_pair[ 1 ] ) * Dimension( vecspace_pair[ 2 ] ) );
end );
AddMorphismFunction( Tensor_Product_For_VecSpaces,
function( new_source, morphism, new_range )
return VectorSpaceMorphism( new_source, KroneckerMat( morphism[ 1 ]!.morphism, morphism[ 2 ]!.morphism ), new_range );
end );
Change_Components := CapFunctor( "change_components", Product( vecspaces, vecspaces ), Product( vecspaces, vecspaces ) );
AddObjectFunction( Change_Components,
function( vecspace_pair )
return Product( vecspace_pair[ 2 ], vecspace_pair[ 1 ] );
end );
AddMorphismFunction( Change_Components,
function( new_source, morphism_pair, new_range )
return Product( morphism_pair[ 2 ], morphism_pair[ 1 ] );
end );
####################################
##
## Generalized morphisms
##
####################################
## use tau as associated morphism
# tau_source_aid := VectorSpaceMorphism( Source( tau ), [ [ 1, 1, 0 ], [ 0, 1, 1 ] ], QVectorSpace( 3 ) );
#
# tau_range_aid := VectorSpaceMorphism( QVectorSpace( 3 ), [ [ 1, 0 ], [ 1, 1 ], [ 0, 1 ] ], Range( tau ) );
#
# GeneralizedMorphism( tau_source_aid, tau, tau_range_aid );
#
# ##
#
# BB := QVectorSpace( 3 );
#
# factor := VectorSpaceMorphism( BB, [ [ 1, -1 ], [ 3, 7 ], [ 21, 4 ] ], QVectorSpace( 2 ) );
#
# sub := VectorSpaceMorphism( QVectorSpace( 2 ), [ [ 1, -1, 2 ], [ 3, -1, 11 ] ], BB );
#
# # factor := VectorSpaceMorphism( BB, [ [ 1 ], [ 3 ], [ 21 ] ], QVectorSpace( 1 ) );
# #
# # sub := VectorSpaceMorphism( QVectorSpace( 2 ), [ [ 1, -1, 2 ], [ 3, -1, 11 ] ], BB );
#
# # factor := VectorSpaceMorphism( BB, [ ], QVectorSpace( 0 ) );
# #
# # sub := VectorSpaceMorphism( QVectorSpace( 2 ), [ [ 1, -1, 2 ], [ 3, -1, 11 ] ], BB );
#
# # factor := VectorSpaceMorphism( BB, [ [ 1 ], [ 3 ], [ 21 ] ], QVectorSpace( 1 ) );
# #
# # sub := VectorSpaceMorphism( QVectorSpace( 0 ), [ ], BB );
#
# phi_tilde_associated := VectorSpaceMorphism( A, [ [ 1, 2, 0 ] ], C );
#
# phi_tilde_source_aid := VectorSpaceMorphism( A, [ [ 1, 2 ] ], B );
#
# phi_tilde := GeneralizedMorphismWithSourceAid( phi_tilde_source_aid, phi_tilde_associated );
#
# psi_tilde_associated := IdentityMorphism( B );
#
# psi_tilde_source_aid := VectorSpaceMorphism( B, [ [ 1, 0, 0 ] ,[ 0, 1, 0 ] ], C );
#
# psi_tilde := GeneralizedMorphismWithSourceAid( psi_tilde_source_aid, psi_tilde_associated );
#
# PreCompose( phi_tilde, psi_tilde );
#
# phi2_tilde_associated := VectorSpaceMorphism( A, [ [ 1, 5 ] ], B );
#
# phi2_tilde_range_aid := VectorSpaceMorphism( C, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ], B );
#
# phi2_tilde := GeneralizedMorphismWithRangeAid( phi2_tilde_associated, phi2_tilde_range_aid );
#
# psi2_tilde_associated := VectorSpaceMorphism( C, [ [ 1 ], [ 3 ], [ 4 ] ], A );
#
# psi2_tilde_range_aid := VectorSpaceMorphism( B, [ [ 1 ], [ 1 ] ], A );
#
# psi2_tilde := GeneralizedMorphismWithRangeAid( psi2_tilde_associated, psi2_tilde_range_aid );
#
# composition := PreCompose( phi2_tilde, psi2_tilde );
# phi3_associated := VectorSpaceMorphism( B, [ [ 1, 0 ], [ 0, 1 ] ], B );
#
# phi3_range_aid := VectorSpaceMorphism( C, [ [ 1, 0 ], [ 0, 1 ], [ 0, 0 ] ], B );
#
# psi3_associated := VectorSpaceMorphism( B, [ [ 1, 0 ], [ 0, 1 ] ], B );
#
# psi3_source_aid := VectorSpaceMorphism( B, [ [ 0,1,0],[0,0,1]], C );
#
# phi3 := GeneralizedMorphismWithRangeAid( phi3_associated, phi3_range_aid );
#
# psi3 := GeneralizedMorphismWithSourceAid( psi3_source_aid, psi3_associated );
#
# PreCompose( phi3, psi3 );
####################################
##
## Natural transformation
##
####################################
##
identity_functor := IdentityMorphism( AsCatObject( vecspaces ) );
##
zero_object := CapFunctor( "Zero functor of VectorSpaces", vecspaces, vecspaces );
AddObjectFunction( zero_object,
function( obj )
return ZeroObject( obj );
end );
AddMorphismFunction( zero_object,
function( zero1, morphism, zero2 )
return VectorSpaceMorphism( zero1, [ ], zero2 );
end );
id_to_zero := NaturalTransformation( "One to zero in VectorSpaces", identity_functor, zero_object );
# psi3 := GeneralizedMorphismWithSourceAid( psi3_source_aid, psi3_associated );
#
# PreCompose( phi3, psi3 );
AddNaturalTransformationFunction( id_to_zero,
function( one_obj, obj, zero )
return MorphismIntoZeroObject( obj );
end );
##
double_functor := CapFunctor( "Double of Vecspaces", vecspaces, vecspaces );
AddObjectFunction( double_functor,
function( obj )
return QVectorSpace( 2 * Dimension( obj ) );
end );
AddMorphismFunction( double_functor,
function( new_source, mor, new_range )
local matr, matr1;
matr := EntriesOfHomalgMatrixAsListList( mor!.morphism );
matr := Concatenation( List( matr, i -> Concatenation( i, ListWithIdenticalEntries( Length( i ), 0 ) ) ),
List( matr, i -> Concatenation( ListWithIdenticalEntries( Length( i ), 0 ), i ) ) );
return VectorSpaceMorphism( new_source, matr, new_range );
end );
id_to_double := NaturalTransformation( "Id to double in vecspaces", identity_functor, double_functor );
AddNaturalTransformationFunction( id_to_double,
function( new_source, obj, new_range )
local dim, matr;
dim := Dimension( obj );
matr := IdentityMat( dim );
matr := List( matr, i -> Concatenation( i, i ) );
return VectorSpaceMorphism( new_source, matr, new_range );
end );
double_swap_components := NaturalTransformation( "double swap components", double_functor, double_functor );
AddNaturalTransformationFunction( double_swap_components,
function( doubled_source, obj, doubled_range )
local zero_morphism, one_morphism;
zero_morphism := ZeroMorphism( obj, obj );
one_morphism := IdentityMorphism( obj );
return MorphismBetweenDirectSums( [ [ zero_morphism, one_morphism ], [ one_morphism, zero_morphism ] ] );
end );
composition_of_double_swap_components := VerticalPreCompose( double_swap_components, double_swap_components );
ApplyNaturalTransformation( composition_of_double_swap_components, A );
# theorem_string := "\alpha:Mor, \beta:Mor ~|~ \IsMonomorphism( \alpha ) \vdash \IsMonomorphism( \ProjectionInFactorOfFiberProduct( [ \alpha, \beta ], 2 ) )";
#
# ADD_THEOREM_TO_CATEGORY( vecspaces, PARSE_THEOREM_FROM_LATEX( theorem_string ) );
# @Theorem
# A | ( For all x in A : IsZero( x ) = true ) => IsZero( DirectProduct( A ) ) = true.
# A:\Obj ~|~ \IsZero( A ) \vdash \IsInjective( A )
# @EndTheorem
# @Proof
# bla bla bla bla
# # @EndProof
#
# eval_rule := rec( command := "PreCompose",
# commands_to_check := [ [ [ 1 ], "UniversalMorphismIntoFiberProduct" ],
# [ [ 2 ], "ProjectionInFactorOfFiberProduct" ] ],
# cells_to_check := [ [ [ 1, 1, 1 ], [ 2, 1, 1 ] ],
# [ [ 1, 1, 2 ], [ 2, 1, 2 ] ],
# [ [ 2, 2 ], 2 ]
# ],
# part_to_replace := [ 1, 2, 1 ],
# ## TODO:
# part_for_is_well_defined := [ [ "IsCongruentForMorphisms", [ [ "PreCompose", [ [ 1, 2, 1 ], [ 1, 1, 1 ] ] ], [ "PreCompose", [ [ 1, 2, 2 ], [ 1, 1, 2 ] ] ] ] ] ] );
#
# eval_rule := REMOVE_CHARACTERS_FROM_LATEX( "A, B:Obj, tau_A, tau_B:Mor |~ &()vdash &Precompose(InjectionOfCofactorOfCoproduct( [A, B], 1 ),&UniversalMorphismFromCoproduct( [A,B], [tau_A, tau_B] ) ) = tau_A" );