Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346if not IsBound( VectorSpacesConstructorsLoaded ) then ReadPackage( "CAP", "examples/testfiles/VectorSpacesConstructors.gi" );; fi; vecspaces := CreateCapCategory( "VectorSpacesForGeneralizedMorphismsTest" ); #! VectorSpacesForGeneralizedMorphismsTest ReadPackage( "CAP", "examples/testfiles/VectorSpacesAllMethods.gi" ); #! true A := QVectorSpace( 3 ); #! <A rational vector space of dimension 3> Asub := QVectorSpace( 2 ); #! <A rational vector space of dimension 2> B := QVectorSpace( 3 ); #! <A rational vector space of dimension 3> Bfac := QVectorSpace( 1 ); #! <A rational vector space of dimension 1> Bsub := QVectorSpace( 2 ); #! <A rational vector space of dimension 2> C := QVectorSpace( 3 ); #! <A rational vector space of dimension 3> Cfac := QVectorSpace( 1 ); #! <A rational vector space of dimension 1> Asub_into_A := VectorSpaceMorphism( Asub, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ], A ); #! A rational vector space homomorphism with matrix: #! [ [ 1, 0, 0 ], #! [ 0, 1, 0 ] ] #! Asub_to_Bfac := VectorSpaceMorphism( Asub, [ [ 1 ], [ 1 ] ], Bfac ); #! A rational vector space homomorphism with matrix: #! [ [ 1 ], #! [ 1 ] ] #! B_onto_Bfac := VectorSpaceMorphism( B, [ [ 1 ], [ 1 ], [ 1 ] ], Bfac ); #! A rational vector space homomorphism with matrix: #! [ [ 1 ], #! [ 1 ], #! [ 1 ] ] #! Bsub_into_B := VectorSpaceMorphism( Bsub, [ [ 2, 2, 0 ], [ 0, 2, 2 ] ], B ); #! A rational vector space homomorphism with matrix: #! [ [ 2, 2, 0 ], #! [ 0, 2, 2 ] ] #! Bsub_to_Cfac := VectorSpaceMorphism( Bsub, [ [ 3 ], [ 0 ] ], Cfac ); #! A rational vector space homomorphism with matrix: #! [ [ 3 ], #! [ 0 ] ] #! C_onto_Cfac := VectorSpaceMorphism( C, [ [ 1 ], [ 2 ], [ 3 ] ], Cfac ); Asub_into_A := InDeductiveSystem( Asub_into_A ); Asub_to_Bfac := InDeductiveSystem( Asub_to_Bfac ); B_onto_Bfac := InDeductiveSystem( B_onto_Bfac ); Bsub_into_B := InDeductiveSystem( Bsub_into_B ); Bsub_to_Cfac := InDeductiveSystem( Bsub_to_Cfac ); C_onto_Cfac := InDeductiveSystem( C_onto_Cfac ); SetIsAbelianCategory( CapCategory( C_onto_Cfac ), true ); generalized_morphism1 := GeneralizedMorphism( Asub_into_A, Asub_to_Bfac, B_onto_Bfac ); #! <A morphism in the category Generalized morphism category of VectorSpacesForGeneralizedMorphismsTest> generalized_morphism2 := GeneralizedMorphism( Bsub_into_B, Bsub_to_Cfac, C_onto_Cfac ); generalized_morphism1 := InDeductiveSystem( generalized_morphism1 ); generalized_morphism2 := InDeductiveSystem( generalized_morphism2 ); p := PreCompose( generalized_morphism1, generalized_morphism2 );