Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346#! @Chapter Examples and Tests #! @Section Spectral Sequences LoadPackage( "ModulePresentationsForCAP" ); LoadPackage( "HomologicalAlgebraForCAP" ); LoadPackage( "RingsForHomalg" ); #ActivateDerivationInfo(); #! @Example ZZ := HomalgRingOfIntegersInSingular( ); #! Z C1 := FreeLeftPresentation( 1, ZZ ); #! <An object in Category of left presentations of Z> C2 := FreeLeftPresentation( 2, ZZ ); #! <An object in Category of left presentations of Z> h1 := PresentationMorphism( C2, HomalgMatrix( [ [ 0 ], [ 4 ] ], ZZ ), C1 ); #! <A morphism in Category of left presentations of Z> h2 := PresentationMorphism( C2, HomalgMatrix( [ [ 0 ], [ 2 ] ], ZZ ), C1 ); #! <A morphism in Category of left presentations of Z> v1 := PresentationMorphism( C2, HomalgMatrix( [ [ 2, 0 ], [ 1, 2 ] ], ZZ ), C2 ); #! <A morphism in Category of left presentations of Z> v2 := PresentationMorphism( C1, HomalgMatrix( [ [ 4 ] ], ZZ ), C1 ); #! <A morphism in Category of left presentations of Z> cocomplex_h1 := CocomplexFromMorphismList( [ h1 ] ); #! <An object in Cocomplex category of Category of left presentations of Z> cocomplex_h2 := CocomplexFromMorphismList( [ h2 ] ); #! <An object in Cocomplex category of Category of left presentations of Z> cocomplex_mor := CochainMap( cocomplex_h2, [ v1, v2 ], cocomplex_h1 ); #! <A morphism in Cocomplex category of Category of left presentations of Z> Zmod := CapCategory( C1 ); #! Category of left presentations of Z CH0 := CohomologyFunctor( Zmod, 0 ); #! 0-th cohomology functor of Category of left presentations of Z cmor0 := ApplyFunctor( CH0, cocomplex_mor ); #! <A morphism in Category of left presentations of Z> Display( UnderlyingMatrix( cmor0 ) ); #! 2 CH1 := CohomologyFunctor( Zmod, 1 ); #! 1-th cohomology functor of Category of left presentations of Z cmor1 := ApplyFunctor( CH1, cocomplex_mor ); #! <A morphism in Category of left presentations of Z> Display( UnderlyingMatrix( cmor1 ) ); #! 4 ToComplex := CocomplexToComplexFunctor( Zmod ); #! Cocomplex to complex functor of Category of left presentations of Z complex_mor := ApplyFunctor( ToComplex, cocomplex_mor ); #! <A morphism in Complex category of Category of left presentations of Z> H0 := HomologyFunctor( Zmod, 0 ); #! 0-th homology functor of Category of left presentations of Z mor0 := ApplyFunctor( H0, complex_mor ); #! <A morphism in Category of left presentations of Z> Display( UnderlyingMatrix( mor0 ) ); #! 2 Hm1 := HomologyFunctor( Zmod, -1 ); #! -1-th homology functor of Category of left presentations of Z mor1 := ApplyFunctor( Hm1, complex_mor ); #! <A morphism in Category of left presentations of Z> Display( UnderlyingMatrix( mor1 ) ); #! 4 #! @EndExample