Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346#! @Chapter Examples and Tests #! @Section Kernel if not IsBound( VectorSpacesConstructorsLoaded ) then ReadPackage( "CAP", "examples/testfiles/VectorSpacesConstructors.gi" ); fi; #! @Example vecspaces := CreateCapCategory( "VectorSpaces01" ); #! VectorSpaces01 ReadPackage( "CAP", "examples/testfiles/VectorSpacesAddKernel01.gi" ); #! true V := QVectorSpace( 2 ); #! <A rational vector space of dimension 2> W := QVectorSpace( 3 ); #! <A rational vector space of dimension 3> alpha := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W ); #! A rational vector space homomorphism with matrix: #! [ [ 1, 1, 1 ], #! [ -1, -1, -1 ] ] #! k := KernelObject( alpha ); #! <A rational vector space of dimension 1> T := QVectorSpace( 2 ); #! <A rational vector space of dimension 2> tau := VectorSpaceMorphism( T, [ [ 2, 2 ], [ 2, 2 ] ], V ); #! A rational vector space homomorphism with matrix: #! [ [ 2, 2 ], #! [ 2, 2 ] ] #! k_lift := KernelLift( alpha, tau ); #! A rational vector space homomorphism with matrix: #! [ [ 2 ], #! [ 2 ] ] #! HasKernelEmbedding( alpha ); #! false KernelEmbedding( alpha ); #! A rational vector space homomorphism with matrix: #! [ [ 1, 1 ] ] #! #! @EndExample #! @Example vecspaces := CreateCapCategory( "VectorSpaces02" ); #! VectorSpaces02 ReadPackage( "CAP", "examples/testfiles/VectorSpacesAddKernel02.gi" ); #! true V := QVectorSpace( 2 ); #! <A rational vector space of dimension 2> W := QVectorSpace( 3 ); #! <A rational vector space of dimension 3> alpha := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W ); #! A rational vector space homomorphism with matrix: #! [ [ 1, 1, 1 ], #! [ -1, -1, -1 ] ] #! k := KernelObject( alpha ); #! <A rational vector space of dimension 1> T := QVectorSpace( 2 ); #! <A rational vector space of dimension 2> tau := VectorSpaceMorphism( T, [ [ 2, 2 ], [ 2, 2 ] ], V ); #! A rational vector space homomorphism with matrix: #! [ [ 2, 2 ], #! [ 2, 2 ] ] #! k_lift := KernelLift( alpha, tau ); #! A rational vector space homomorphism with matrix: #! [ [ 2 ], #! [ 2 ] ] #! HasKernelEmbedding( alpha ); #! false #! @EndExample #! @Example vecspaces := CreateCapCategory( "VectorSpaces03" ); #! VectorSpaces03 ReadPackage( "CAP", "examples/testfiles/VectorSpacesAddKernel03.gi" ); #! true V := QVectorSpace( 2 ); #! <A rational vector space of dimension 2> W := QVectorSpace( 3 ); #! <A rational vector space of dimension 3> alpha := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W ); #! A rational vector space homomorphism with matrix: #! [ [ 1, 1, 1 ], #! [ -1, -1, -1 ] ] #! k := KernelObject( alpha ); #! <A rational vector space of dimension 1> k_emb := KernelEmbedding( alpha ); #! A rational vector space homomorphism with matrix: #! [ [ 1, 1 ] ] #! IsIdenticalObj( Source( k_emb ), k ); #! true V := QVectorSpace( 2 ); #! <A rational vector space of dimension 2> W := QVectorSpace( 3 ); #! <A rational vector space of dimension 3> beta := VectorSpaceMorphism( V, [ [ 1, 1, 1 ], [ -1, -1, -1 ] ], W ); #! A rational vector space homomorphism with matrix: #! [ [ 1, 1, 1 ], #! [ -1, -1, -1 ] ] #! k_emb := KernelEmbedding( beta ); #! A rational vector space homomorphism with matrix: #! [ [ 1, 1 ] ] #! IsIdenticalObj( Source( k_emb ), KernelObject( beta ) ); #! true #! @EndExample