Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## ## CAP package ## ## Copyright 2015, Sebastian Gutsche, TU Kaiserslautern ## Sebastian Posur, RWTH Aachen ## ############################################################################# InstallValue( CAP_INTERNAL_CONSTRUCTIVE_CATEGORIES_RECORD, rec( EveryCategory := [ "PreCompose", "IdentityMorphism", "IsEqualForObjects", "IsEqualForMorphisms", "IsCongruentForMorphisms" ], IsEnrichedOverCommutativeRegularSemigroup := Concatenation( [ "AdditionForMorphisms" ], ~.EveryCategory ), IsAbCategory := Concatenation( [ "ZeroMorphism", "IsZeroForMorphisms", "SubtractionForMorphisms", "AdditiveInverseForMorphisms" ], ~.IsEnrichedOverCommutativeRegularSemigroup ), IsAdditiveCategory := Concatenation( [ "ZeroObject", "UniversalMorphismFromZeroObject", "UniversalMorphismIntoZeroObject", "DirectSum", "ProjectionInFactorOfDirectSum", "InjectionOfCofactorOfDirectSum", "UniversalMorphismIntoDirectSum", "UniversalMorphismFromDirectSum" ], ~.IsAbCategory ), IsPreAbelianCategory := Concatenation( [ "KernelObject", "KernelEmbedding", "KernelLift", "CokernelObject", "CokernelProjection", "CokernelColift" ], ~.IsAdditiveCategory ), IsAbelianCategory := Concatenation( [ "LiftAlongMonomorphism", "ColiftAlongEpimorphism" ], ~.IsPreAbelianCategory ), IsMonoidalCategory := Concatenation( [ "TensorProductOnObjects", "TensorProductOnMorphismsWithGivenTensorProducts", "TensorUnit", "AssociatorLeftToRightWithGivenTensorProducts", "AssociatorRightToLeftWithGivenTensorProducts", "LeftUnitorWithGivenTensorProduct", "LeftUnitorInverseWithGivenTensorProduct", "RightUnitorWithGivenTensorProduct", "RightUnitorInverseWithGivenTensorProduct" ], ~.EveryCategory ), IsBraidedMonoidalCategory := Concatenation( [ "BraidingWithGivenTensorProducts", "BraidingInverseWithGivenTensorProducts" ], ~.IsMonoidalCategory ), IsSymmetricMonoidalCategory := Concatenation( [ ], ~.IsBraidedMonoidalCategory ), IsSymmetricClosedMonoidalCategory := Concatenation( [ "InternalHomOnObjects", "InternalHomOnMorphismsWithGivenInternalHoms", "EvaluationMorphismWithGivenSource", "CoevaluationMorphismWithGivenRange" ], ~.IsSymmetricMonoidalCategory ), IsRigidSymmetricClosedMonoidalCategory := Concatenation( [ "TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects", "MorphismFromBidualWithGivenBidual" ], ~.IsSymmetricClosedMonoidalCategory ) ) );