CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Path: gap4r8 / pkg / Convex / doc / chap5.txt
Views: 418346
1
2
5 Cone
3
4
5
5.1 Cone: Category and Representations
6
7
5.1-1 IsCone
8
9
IsCone( M )  Category
10
Returns: true or false
11
12
The GAP category of a cone.
13
14
Remember: Every cone is a convex object.
15
16
17
5.2 Cone: Properties
18
19
5.2-1 IsRay
20
21
IsRay( cone )  property
22
Returns: true or false
23
24
Checks if the cone cone is a ray, i.e. if it has only one ray generator.
25
26
27
5.3 Cone: Attributes
28
29
5.3-1 DualCone
30
31
DualCone( cone )  attribute
32
Returns: a cone
33
34
Returns the dual cone of the cone cone.
35
36
5.3-2 HilbertBasis
37
38
HilbertBasis( cone )  attribute
39
Returns: a list
40
41
Returns a Hilbert Basis of the cone cone.
42
43
5.3-3 RaysInFacets
44
45
RaysInFacets( cone )  attribute
46
Returns: a list
47
48
Returns an incidence matrix for the rays in the facets of the cone cone. The
49
ith entry of the result corresponds to the ith facet, the jth entry of this
50
is 1 if the jth ray is in th ith facet, 0 otherwise.
51
52
5.3-4 Facets
53
54
Facets( cone )  attribute
55
Returns: a list
56
57
Returns a list of the facets of the cone cone as homalg cones.
58
59
5.3-5 GridGeneratedByCone
60
61
GridGeneratedByCone( cone )  attribute
62
Returns: a homalg module
63
64
Returns the grid generated by the lattice points of the cone cone as a
65
homalg module.
66
67
5.3-6 FactorGrid
68
69
FactorGrid( cone )  attribute
70
Returns: a homalg module
71
72
Returns the factor of the containing grid of the cone cone and the grid
73
generated by cone.
74
75
5.3-7 GridGeneratedByOrthogonalCone
76
77
GridGeneratedByOrthogonalCone( cone )  attribute
78
Returns: a homalg module
79
80
Returns the grid generated by the lattice points of the orthogonal cone of
81
the cone cone.
82
83
5.3-8 DefiningInequalities
84
85
DefiningInequalities( cone )  attribute
86
Returns: a list
87
88
Returns a list of the defining inequalities of the cone cone.
89
90
5.3-9 IsContainedInFan
91
92
IsContainedInFan( cone )  attribute
93
Returns: a fan
94
95
If the cone cone is constructed as part of a fan, this method returns the
96
fan.
97
98
5.3-10 FactorGridMorphism
99
100
FactorGridMorphism( cone )  attribute
101
Returns: a morphism
102
103
Returns the morphism to the factor grid of the cone cone.
104
105
106
5.4 Cone: Methods
107
108
5.4-1 IntersectionOfCones
109
110
IntersectionOfCones( cone1, cone2 )  operation
111
Returns: a cone
112
113
If the cones cone1 and cone2 share a face, the method returns their
114
intersection,
115
116
5.4-2 Contains
117
118
Contains( cone1, cone2 )  operation
119
Returns: true or false
120
121
Returns true if the cone cone1 contains the cone cone2, false otherwise.
122
123
5.4-3 StarFan
124
125
StarFan( cone )  operation
126
Returns: a fan
127
128
Returns the star fan of the cone cone, as described in cox, 3.2.7
129
130
5.4-4 StarFan
131
132
StarFan( cone, fan )  operation
133
Returns: a fan
134
135
Returns the star fan of the fan fan along the cone cone, as described in
136
cox, 3.2.7
137
138
5.4-5 StarSubdivisionOfIthMaximalCone
139
140
StarSubdivisionOfIthMaximalCone( fan, numb )  operation
141
Returns: a fan
142
143
Returns the star subdivision of the fan fan on the numbth maximal cone as in
144
cox, 3.3.13.
145
146
147
5.5 Cone: Constructors
148
149
5.5-1 Cone
150
151
Cone( cone )  operation
152
Returns: a cone
153
154
Returns a cone generated by the rays in cone.
155
156
157
5.6 Cone: Examples
158
159
160
5.6-1 Cone example
161
162
 Example 
163
gap> C := Cone([[1,2,3],[2,1,1],[1,0,0],[0,1,1]]);
164
<A cone in |R^3>
165
gap> Length( RayGenerators( C ) );
166
3
167
gap> IsSmooth( C );
168
true
169
gap> Length( HilbertBasis( C ) );
170
3
171
gap> IsSimplicial( C );
172
true
173
gap> DC := DualCone( C );
174
<A cone in |R^3>
175
gap> Length( HilbertBasis( DC ) );
176
3
177

178
179
180