Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X5 [33X[0;0YCone[133X[101X234[1X5.1 [33X[0;0YCone: Category and Representations[133X[101X56[1X5.1-1 IsCone[101X78[29X[2XIsCone[102X( [3XM[103X ) [32X Category9[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X1011[33X[0;0YThe [5XGAP[105X category of a cone.[133X1213[33X[0;0YRemember: Every cone is a convex object.[133X141516[1X5.2 [33X[0;0YCone: Properties[133X[101X1718[1X5.2-1 IsRay[101X1920[29X[2XIsRay[102X( [3Xcone[103X ) [32X property21[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2223[33X[0;0YChecks if the cone [3Xcone[103X is a ray, i.e. if it has only one ray generator.[133X242526[1X5.3 [33X[0;0YCone: Attributes[133X[101X2728[1X5.3-1 DualCone[101X2930[29X[2XDualCone[102X( [3Xcone[103X ) [32X attribute31[6XReturns:[106X [33X[0;10Ya cone[133X3233[33X[0;0YReturns the dual cone of the cone [3Xcone[103X.[133X3435[1X5.3-2 HilbertBasis[101X3637[29X[2XHilbertBasis[102X( [3Xcone[103X ) [32X attribute38[6XReturns:[106X [33X[0;10Ya list[133X3940[33X[0;0YReturns a Hilbert Basis of the cone [3Xcone[103X.[133X4142[1X5.3-3 RaysInFacets[101X4344[29X[2XRaysInFacets[102X( [3Xcone[103X ) [32X attribute45[6XReturns:[106X [33X[0;10Ya list[133X4647[33X[0;0YReturns an incidence matrix for the rays in the facets of the cone [3Xcone[103X. The48ith entry of the result corresponds to the ith facet, the jth entry of this49is 1 if the jth ray is in th ith facet, 0 otherwise.[133X5051[1X5.3-4 Facets[101X5253[29X[2XFacets[102X( [3Xcone[103X ) [32X attribute54[6XReturns:[106X [33X[0;10Ya list[133X5556[33X[0;0YReturns a list of the facets of the cone [3Xcone[103X as homalg cones.[133X5758[1X5.3-5 GridGeneratedByCone[101X5960[29X[2XGridGeneratedByCone[102X( [3Xcone[103X ) [32X attribute61[6XReturns:[106X [33X[0;10Ya homalg module[133X6263[33X[0;0YReturns the grid generated by the lattice points of the cone [3Xcone[103X as a64homalg module.[133X6566[1X5.3-6 FactorGrid[101X6768[29X[2XFactorGrid[102X( [3Xcone[103X ) [32X attribute69[6XReturns:[106X [33X[0;10Ya homalg module[133X7071[33X[0;0YReturns the factor of the containing grid of the cone [3Xcone[103X and the grid72generated by [3Xcone[103X.[133X7374[1X5.3-7 GridGeneratedByOrthogonalCone[101X7576[29X[2XGridGeneratedByOrthogonalCone[102X( [3Xcone[103X ) [32X attribute77[6XReturns:[106X [33X[0;10Ya homalg module[133X7879[33X[0;0YReturns the grid generated by the lattice points of the orthogonal cone of80the cone [3Xcone[103X.[133X8182[1X5.3-8 DefiningInequalities[101X8384[29X[2XDefiningInequalities[102X( [3Xcone[103X ) [32X attribute85[6XReturns:[106X [33X[0;10Ya list[133X8687[33X[0;0YReturns a list of the defining inequalities of the cone [3Xcone[103X.[133X8889[1X5.3-9 IsContainedInFan[101X9091[29X[2XIsContainedInFan[102X( [3Xcone[103X ) [32X attribute92[6XReturns:[106X [33X[0;10Ya fan[133X9394[33X[0;0YIf the cone [3Xcone[103X is constructed as part of a fan, this method returns the95fan.[133X9697[1X5.3-10 FactorGridMorphism[101X9899[29X[2XFactorGridMorphism[102X( [3Xcone[103X ) [32X attribute100[6XReturns:[106X [33X[0;10Ya morphism[133X101102[33X[0;0YReturns the morphism to the factor grid of the cone [3Xcone[103X.[133X103104105[1X5.4 [33X[0;0YCone: Methods[133X[101X106107[1X5.4-1 IntersectionOfCones[101X108109[29X[2XIntersectionOfCones[102X( [3Xcone1[103X, [3Xcone2[103X ) [32X operation110[6XReturns:[106X [33X[0;10Ya cone[133X111112[33X[0;0YIf the cones [3Xcone1[103X and [3Xcone2[103X share a face, the method returns their113intersection,[133X114115[1X5.4-2 Contains[101X116117[29X[2XContains[102X( [3Xcone1[103X, [3Xcone2[103X ) [32X operation118[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X119120[33X[0;0YReturns [10Xtrue[110X if the cone [3Xcone1[103X contains the cone [3Xcone2[103X, [10Xfalse[110X otherwise.[133X121122[1X5.4-3 StarFan[101X123124[29X[2XStarFan[102X( [3Xcone[103X ) [32X operation125[6XReturns:[106X [33X[0;10Ya fan[133X126127[33X[0;0YReturns the star fan of the cone [3Xcone[103X, as described in cox, 3.2.7[133X128129[1X5.4-4 StarFan[101X130131[29X[2XStarFan[102X( [3Xcone[103X, [3Xfan[103X ) [32X operation132[6XReturns:[106X [33X[0;10Ya fan[133X133134[33X[0;0YReturns the star fan of the fan [3Xfan[103X along the cone [3Xcone[103X, as described in135cox, 3.2.7[133X136137[1X5.4-5 StarSubdivisionOfIthMaximalCone[101X138139[29X[2XStarSubdivisionOfIthMaximalCone[102X( [3Xfan[103X, [3Xnumb[103X ) [32X operation140[6XReturns:[106X [33X[0;10Ya fan[133X141142[33X[0;0YReturns the star subdivision of the fan [3Xfan[103X on the [3Xnumb[103Xth maximal cone as in143cox, 3.3.13.[133X144145146[1X5.5 [33X[0;0YCone: Constructors[133X[101X147148[1X5.5-1 Cone[101X149150[29X[2XCone[102X( [3Xcone[103X ) [32X operation151[6XReturns:[106X [33X[0;10Ya cone[133X152153[33X[0;0YReturns a cone generated by the rays in [3Xcone[103X.[133X154155156[1X5.6 [33X[0;0YCone: Examples[133X[101X157158159[1X5.6-1 [33X[0;0YCone example[133X[101X160161[4X[32X Example [32X[104X162[4X[25Xgap>[125X [27XC := Cone([[1,2,3],[2,1,1],[1,0,0],[0,1,1]]);[127X[104X163[4X[28X<A cone in |R^3>[128X[104X164[4X[25Xgap>[125X [27XLength( RayGenerators( C ) );[127X[104X165[4X[28X3[128X[104X166[4X[25Xgap>[125X [27XIsSmooth( C );[127X[104X167[4X[28Xtrue[128X[104X168[4X[25Xgap>[125X [27XLength( HilbertBasis( C ) );[127X[104X169[4X[28X3[128X[104X170[4X[25Xgap>[125X [27XIsSimplicial( C );[127X[104X171[4X[28Xtrue[128X[104X172[4X[25Xgap>[125X [27XDC := DualCone( C );[127X[104X173[4X[28X<A cone in |R^3>[128X[104X174[4X[25Xgap>[125X [27XLength( HilbertBasis( DC ) );[127X[104X175[4X[28X3[128X[104X176[4X[32X[104X177178179180