Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################## ## ## Polytope.gd ConvexForHomalg package Sebastian Gutsche ## ## Copyright 2011 Lehrstuhl B für Mathematik, RWTH Aachen ## ## Cones for ConvexForHomalg. ## ############################################################################# ## <#GAPDoc Label="IsPolytope"> ## <ManSection> ## <Filt Type="Category" Arg="M" Name="IsPolytope"/> ## <Returns><C>true</C> or <C>false</C></Returns> ## <Description> ## The &GAP; category of a polytope. Every polytope is a convex object. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareCategory( "IsPolytope", IsConvexObject ); ################################ ## ## Basic Properties ## ################################ ## <#GAPDoc Label="IsNotEmpty"> ## <ManSection> ## <Prop Arg="poly" Name="IsNotEmpty"/> ## <Returns><C>true</C> or <C>false</C></Returns> ## <Description> ## Checks if the polytope <A>poly</A> is not empty. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareProperty( "IsNotEmpty", IsPolytope ); ## <#GAPDoc Label="IsLatticePolytope"> ## <ManSection> ## <Prop Arg="poly" Name="IsLatticePolytope"/> ## <Returns><C>true</C> or <C>false</C></Returns> ## <Description> ## Checks if the polytope <A>poly</A> is a lattice polytope, i.e. all its vertices are lattice points. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareProperty( "IsLatticePolytope", IsPolytope ); ## <#GAPDoc Label="IsVeryAmple"> ## <ManSection> ## <Prop Arg="poly" Name="IsVeryAmple"/> ## <Returns><C>true</C> or <C>false</C></Returns> ## <Description> ## Checks if the polytope <A>poly</A> is very ample. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareProperty( "IsVeryAmple", IsPolytope ); ## <#GAPDoc Label="IsNormalPolytope"> ## <ManSection> ## <Prop Arg="poly" Name="IsNormalPolytope"/> ## <Returns><C>true</C> or <C>false</C></Returns> ## <Description> ## Checks if the polytope <A>poly</A> is normal. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareProperty( "IsNormalPolytope", IsPolytope ); ## <#GAPDoc Label="IsSimplicialPolytope"> ## <ManSection> ## <Prop Arg="poly" Name="IsSimplicial" Label="for a polytope"/> ## <Returns><C>true</C> or <C>false</C></Returns> ## <Description> ## Checks if the polytope <A>poly</A> is simplicial. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareProperty( "IsSimplicial", IsPolytope ); ## <#GAPDoc Label="IsSimplePolytope"> ## <ManSection> ## <Prop Arg="poly" Name="IsSimplePolytope"/> ## <Returns><C>true</C> or <C>false</C></Returns> ## <Description> ## Checks if the polytope <A>poly</A> is simple. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareProperty( "IsSimplePolytope", IsPolytope ); ## <#GAPDoc Label="IsBounded"> ## <ManSection> ## <Prop Arg="poly" Name="IsBounded"/> ## <Returns><C>true</C> or <C>false</C></Returns> ## <Description> ## Checks if the polytope <A>poly</A> is bounded, i. e. has finite volume. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareProperty( "IsBounded", IsPolytope ); ################################ ## ## Attributes ## ################################ ## <#GAPDoc Label="Vertices"> ## <ManSection> ## <Attr Arg="poly" Name="Vertices"/> ## <Returns>a list</Returns> ## <Description> ## Returns the vertices of the polytope <A>poly</A>. ## For reasons, the corresponding tester is HasVerticesOfPolytopes ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareAttribute( "VerticesOfPolytope", IsPolytope ); ## To be compatible with simons SCO DeclareOperation( "Vertices", [ IsPolytope ] ); DeclareOperation( "SetVertices", [ IsPolytope, IsObject ] ); DeclareOperation( "HasVertices", [ IsPolytope ] ); ## <#GAPDoc Label="LatticePoints"> ## <ManSection> ## <Attr Arg="poly" Name="LatticePoints"/> ## <Returns>a list</Returns> ## <Description> ## Returns the lattice points of the polytope <A>poly</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareAttribute( "LatticePoints", IsPolytope ); ## <#GAPDoc Label="FacetInequalities"> ## <ManSection> ## <Attr Arg="poly" Name="FacetInequalities"/> ## <Returns>a list</Returns> ## <Description> ## Returns the facet inequalities for the polytope <A>poly</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareAttribute( "FacetInequalities", IsPolytope ); ## <#GAPDoc Label="VerticesInFacets"> ## <ManSection> ## <Attr Arg="poly" Name="VerticesInFacets"/> ## <Returns>a list</Returns> ## <Description> ## Returns the incidence matrix of vertices and facets of the polytope <A>poly</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareAttribute( "VerticesInFacets", IsPolytope ); ## <#GAPDoc Label="NormalFan"> ## <ManSection> ## <Attr Arg="poly" Name="NormalFan"/> ## <Returns>a fan</Returns> ## <Description> ## Returns the normal fan of the polytope <A>poly</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareAttribute( "NormalFan", IsPolytope ); ## <#GAPDoc Label="AffineCone"> ## <ManSection> ## <Attr Arg="poly" Name="AffineCone"/> ## <Returns>a cone</Returns> ## <Description> ## Returns the affine cone of the polytope <A>poly</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareAttribute( "AffineCone", IsPolytope ); ## <#GAPDoc Label="RelativeInteriorLatticePoints"> ## <ManSection> ## <Attr Arg="poly" Name="RelativeInteriorLatticePoints"/> ## <Returns>a list</Returns> ## <Description> ## Returns the lattice points in the relative interior of the polytope <A>poly</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareAttribute( "RelativeInteriorLatticePoints", IsPolytope ); DeclareAttribute( "EqualitiesOfPolytope", IsPolytope ); DeclareAttribute( "DefiningInequalities", IsPolytope ); DeclareAttribute( "LatticePointsGenerators", IsPolytope ); ################################ ## ## Methods ## ################################ ## <#GAPDoc Label="PROD"> ## <ManSection> ## <Oper Arg="polytope1,polytope2" Name="*" Label="for polytopes"/> ## <Returns>a polytope</Returns> ## <Description> ## Returns the Cartesian product of the polytopes <A>polytope1</A> and <A>polytope2</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareOperation( "\*", [ IsPolytope, IsPolytope ] ); ## <#GAPDoc Label="PLUS"> ## <ManSection> ## <Oper Arg="polytope1,polytope2" Name="#"/> ## <Returns>a polytope</Returns> ## <Description> ## Returns the Minkowski sum of the polytopes <A>polytope1</A> and <A>polytope2</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareOperation( "\+", [ IsPolytope, IsPolytope ] ); DeclareOperation( "IntersectionOfPolytopes", [ IsPolytope, IsPolytope ] ); ################################ ## ## Constructors ## ################################ DeclareOperation( "Polytope", [ IsExternalObject ] ); DeclareOperation( "Polytope", [ IsPolytope ] ); ## <#GAPDoc Label="Polytope"> ## <ManSection> ## <Oper Arg="points" Name="Polytope" Label="for lists of points"/> ## <Returns>a polytope</Returns> ## <Description> ## Returns a polytope that is the convex hull of the points <A>points</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareOperation( "Polytope", [ IsList ] ); ## <#GAPDoc Label="PolytopeByInequalities"> ## <ManSection> ## <Oper Arg="ineqs" Name="PolytopeByInequalities"/> ## <Returns>a polytope</Returns> ## <Description> ## Returns a polytope defined by the inequalities <A>ineqs</A>. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareOperation( "PolytopeByInequalities", [ IsList ] ); DeclareOperation( "PolymakePolytope", [ IsList ] ); DeclareOperation( "PolymakePolytopeByInequalities", [ IsList ] ); DeclareOperation( "InternalPolytope", [ IsList ] ); DeclareOperation( "InternalPolytopeByInequalities", [ IsList ] );