Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346## <#GAPDoc Label="A3_Purity"> ## <Subsection Label="A3_Purity"> ## <Heading>A3_Purity</Heading> ## This is Example B.4 in <Cite Key="BaSF"/>. ## <Example><![CDATA[ ## gap> Qxyz := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z"; ## Q[x,y,z] ## gap> A3 := RingOfDerivations( Qxyz, "Dx,Dy,Dz" ); ## Q[x,y,z]<Dx,Dy,Dz> ## gap> nmat := HomalgMatrix( "[ \ ## > 3*Dy*Dz-Dz^2+Dx+3*Dy-Dz, 3*Dy*Dz-Dz^2, \ ## > Dx*Dz+Dz^2+Dz, Dx*Dz+Dz^2, \ ## > Dx*Dy, 0, \ ## > Dz^2-Dx+Dz, 3*Dx*Dy+Dz^2, \ ## > Dx^2, 0, \ ## > -Dz^2+Dx-Dz, 3*Dx^2-Dz^2, \ ## > Dz^3-Dx*Dz+Dz^2, Dz^3, \ ## > 2*x*Dz^2-2*x*Dx+2*x*Dz+3*Dx+3*Dz+3,2*x*Dz^2+3*Dx+3*Dz\ ## > ]", 8, 2, A3 ); ## <A 8 x 2 matrix over an external ring> ## gap> N := LeftPresentation( nmat ); ## <A left module presented by 8 relations for 2 generators> ## gap> filt := PurityFiltration( N ); ## <The ascending purity filtration with degrees [ -3 .. 0 ] and graded parts: ## 0: <A zero left module> ## ## -1: <A cyclic reflexively pure grade 1 left module presented by 1 relation for\ ## a cyclic generator> ## ## -2: <A cyclic reflexively pure grade 2 left module presented by 2 relations fo\ ## r a cyclic generator> ## ## -3: <A cyclic reflexively pure grade 3 left module presented by 3 relations fo\ ## r a cyclic generator> ## of ## <A non-pure grade 1 left module presented by 8 relations for 2 generators>> ## gap> II_E := SpectralSequence( filt ); ## <A stable homological spectral sequence with sheets at levels ## [ 0 .. 2 ] each consisting of left modules at bidegrees [ -3 .. 0 ]x ## [ 0 .. 3 ]> ## gap> Display( II_E ); ## The associated transposed spectral sequence: ## ## a homological spectral sequence at bidegrees ## [ [ 0 .. 3 ], [ -3 .. 0 ] ] ## --------- ## Level 0: ## ## * * * * ## . * * * ## . . * * ## . . . * ## --------- ## Level 1: ## ## * * * * ## . . . . ## . . . . ## . . . . ## --------- ## Level 2: ## ## s . . . ## . . . . ## . . . . ## . . . . ## ## Now the spectral sequence of the bicomplex: ## ## a homological spectral sequence at bidegrees ## [ [ -3 .. 0 ], [ 0 .. 3 ] ] ## --------- ## Level 0: ## ## * * * * ## . * * * ## . . * * ## . . . * ## --------- ## Level 1: ## ## * * * * ## . * * * ## . . * * ## . . . . ## --------- ## Level 2: ## ## s . . . ## . s . . ## . . s . ## . . . . ## gap> m := IsomorphismOfFiltration( filt ); ## <A non-zero isomorphism of left modules> ## gap> IsIdenticalObj( Range( m ), N ); ## true ## gap> Source( m ); ## <A left module presented by 6 relations for 3 generators (locked)> ## gap> Display( last ); ## Dx,1/3,-1/9*x, ## 0, Dy, 1/6, ## 0, Dx, -1/2, ## 0, 0, Dz, ## 0, 0, Dy, ## 0, 0, Dx ## ## Cokernel of the map ## ## R^(1x6) --> R^(1x3), ( for R := Q[x,y,z]<Dx,Dy,Dz> ) ## ## currently represented by the above matrix ## gap> Display( filt ); ## Degree 0: ## ## 0 ## ---------- ## Degree -1: ## ## Q[x,y,z]<Dx,Dy,Dz>/< Dx > ## ---------- ## Degree -2: ## ## Q[x,y,z]<Dx,Dy,Dz>/< Dy, Dx > ## ---------- ## Degree -3: ## ## Q[x,y,z]<Dx,Dy,Dz>/< Dz, Dy, Dx > ## gap> Display( m ); ## 1, 1, ## 3*Dz+3, 3*Dz, ## -6*Dz^2+6*Dx-6*Dz,-6*Dz^2 ## ## the map is currently represented by the above 3 x 2 matrix ## ]]></Example> ## </Subsection> ## <#/GAPDoc> Read( "Coupling.g" ); filt := PurityFiltration( N ); II_E := SpectralSequence( filt ); m := IsomorphismOfFiltration( filt ); Display( StringTime( homalgTime( A3 ) ) );