Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346## <#GAPDoc Label="HomHom"> ## <Subsection Label="HomHom"> ## <Heading>HomHom</Heading> ## This corresponds to the example of Section 2 in <Cite Key="BREACA"/>. ## <Example><![CDATA[ ## gap> R := HomalgRingOfIntegersInExternalGAP( ) / 2^8; ## Z/( 256 ) ## gap> Display( R ); ## <A residue class ring> ## gap> M := LeftPresentation( [ 2^5 ], R ); ## <A cyclic left module presented by 1 relation for a cyclic generator> ## gap> Display( M ); ## Z/( 256 )/< |[ 32 ]| > ## gap> M; ## <A cyclic left module presented by 1 relation for a cyclic generator> ## gap> _M := LeftPresentation( [ 2^3 ], R ); ## <A cyclic left module presented by 1 relation for a cyclic generator> ## gap> Display( _M ); ## Z/( 256 )/< |[ 8 ]| > ## gap> _M; ## <A cyclic left module presented by 1 relation for a cyclic generator> ## gap> alpha2 := HomalgMap( [ 1 ], M, _M ); ## <A "homomorphism" of left modules> ## gap> IsMorphism( alpha2 ); ## true ## gap> alpha2; ## <A homomorphism of left modules> ## gap> Display( alpha2 ); ## [ [ 1 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## gap> M_ := Kernel( alpha2 ); ## <A cyclic left module presented by yet unknown relations for a cyclic generato\ ## r> ## gap> alpha1 := KernelEmb( alpha2 ); ## <A monomorphism of left modules> ## gap> seq := HomalgComplex( alpha2 ); ## <An acyclic complex containing a single morphism of left modules at degrees ## [ 0 .. 1 ]> ## gap> Add( seq, alpha1 ); ## gap> seq; ## <A sequence containing 2 morphisms of left modules at degrees [ 0 .. 2 ]> ## gap> IsShortExactSequence( seq ); ## true ## gap> seq; ## <A short exact sequence containing 2 morphisms of left modules at degrees ## [ 0 .. 2 ]> ## gap> Display( seq ); ## ------------------------- ## at homology degree: 2 ## Z/( 256 )/< |[ 4 ]| > ## ------------------------- ## [ [ 24 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 1 ## Z/( 256 )/< |[ 32 ]| > ## ------------------------- ## [ [ 1 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 0 ## Z/( 256 )/< |[ 8 ]| > ## ------------------------- ## gap> K := LeftPresentation( [ 2^7 ], R ); ## <A cyclic left module presented by 1 relation for a cyclic generator> ## gap> L := RightPresentation( [ 2^4 ], R ); ## <A cyclic right module on a cyclic generator satisfying 1 relation> ## gap> triangle := LHomHom( 4, seq, K, L, "t" ); ## <An exact triangle containing 3 morphisms of left complexes at degrees ## [ 1, 2, 3, 1 ]> ## gap> lehs := LongSequence( triangle ); ## <A sequence containing 14 morphisms of left modules at degrees [ 0 .. 14 ]> ## gap> ByASmallerPresentation( lehs ); ## <A non-zero sequence containing 14 morphisms of left modules at degrees ## [ 0 .. 14 ]> ## gap> IsExactSequence( lehs ); ## false ## gap> lehs; ## <A non-zero left acyclic complex containing ## 14 morphisms of left modules at degrees [ 0 .. 14 ]> ## gap> Assert( 0, IsLeftAcyclic( lehs ) ); ## gap> Display( lehs ); ## ------------------------- ## at homology degree: 14 ## Z/( 256 )/< |[ 4 ]| > ## ------------------------- ## [ [ 4 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 13 ## Z/( 256 )/< |[ 8 ]| > ## ------------------------- ## [ [ 2 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 12 ## Z/( 256 )/< |[ 8 ]| > ## ------------------------- ## [ [ 2 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 11 ## Z/( 256 )/< |[ 4 ]| > ## ------------------------- ## [ [ 4 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 10 ## Z/( 256 )/< |[ 8 ]| > ## ------------------------- ## [ [ 2 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 9 ## Z/( 256 )/< |[ 8 ]| > ## ------------------------- ## [ [ 2 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 8 ## Z/( 256 )/< |[ 4 ]| > ## ------------------------- ## [ [ 4 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 7 ## Z/( 256 )/< |[ 8 ]| > ## ------------------------- ## [ [ 2 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 6 ## Z/( 256 )/< |[ 8 ]| > ## ------------------------- ## [ [ 2 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 5 ## Z/( 256 )/< |[ 4 ]| > ## ------------------------- ## [ [ 4 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 4 ## Z/( 256 )/< |[ 8 ]| > ## ------------------------- ## [ [ 2 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 3 ## Z/( 256 )/< |[ 8 ]| > ## ------------------------- ## [ [ 2 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 2 ## Z/( 256 )/< |[ 4 ]| > ## ------------------------- ## [ [ 8 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 1 ## Z/( 256 )/< |[ 16 ]| > ## ------------------------- ## [ [ 1 ] ] ## ## modulo [ 256 ] ## ## the map is currently represented by the above 1 x 1 matrix ## ------------v------------ ## at homology degree: 0 ## Z/( 256 )/< |[ 8 ]| > ## ------------------------- ## ]]></Example> ## </Subsection> ## <#/GAPDoc> LoadPackage( "RingsForHomalg" ); R := HomalgRingOfIntegersInDefaultCAS( 2^8 ); LoadPackage( "Modules" ); M := LeftPresentation( [ 2^5 ], R ); _M := LeftPresentation( [ 2^3 ], R ); alpha2 := HomalgMap( [ 1 ], M, _M ); M_ := Kernel( alpha2 ); alpha1 := KernelEmb( alpha2 ); seq := HomalgComplex( alpha2 ); Add( seq, alpha1 ); IsShortExactSequence( seq ); K := LeftPresentation( [ 2^7 ], R ); L := RightPresentation( [ 2^4 ], R ); triangle := LHomHom( 4, seq, K, L, "t" ); lehs := LongSequence( triangle ); ByASmallerPresentation( lehs ); IsExactSequence( lehs ); Assert( 0, IsLeftAcyclic( lehs ) );