CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
#############################################################################
##
##  GaussSparse.gi               Gauss package                Simon Goertzen
##
##  Copyright 2007-2008 Lehrstuhl B f��r Mathematik, RWTH Aachen
##
##  Implementation stuff for performing Gauss algorithms on sparse matrices.
##
#############################################################################

########################################################
## Gaussian Algorithms:
########################################################

##
InstallMethod( EchelonMatDestructive,
        "generic method for matrices",
        [ IsSparseMatrix ],
  function( mat )
    local nrows,     # number of rows in <mat>
          ncols,     # number of columns in <mat>
          indices,
          entries,
          vectors,   # list of basis vectors
          heads,     # list of pivot positions in 'vectors'
          i,         # loop over rows
          j,         # loop over columns
          head,
          x,
          rank,
          list,
	  row_indices,
	  row_entries,
	  p,
	  a;
	  
    
    nrows := mat!.nrows;
    ncols := mat!.ncols;
    
    indices := mat!.indices;
    entries := mat!.entries;
    
    heads   := ListWithIdenticalEntries( ncols, 0 );
    vectors := rec( indices := [], entries := [] );
    
    for i in [ 1 .. nrows ] do
        
        row_indices := indices[i];
        
        # Reduce the row with the known basis vectors.
        for j in [ 1 .. ncols ] do
            head := heads[j];
            if head <> 0 then
                p := PositionSet( row_indices, j );
                if p <> fail then
                    row_entries := entries[i];
                    x := - row_entries[p];
                    AddRow( vectors.indices[ head ], vectors.entries[ head ] * x, row_indices, row_entries );
                fi;
            fi;
        od;
        
        if Length( row_indices ) > 0 then
            j := row_indices[1];
            row_entries := entries[i];
            # We found a new basis vector.
            x := Inverse( row_entries[1] );
            if x = fail then
                TryNextMethod();
            fi;
            Add( vectors.indices, row_indices );
            Add( vectors.entries, row_entries * x );
            heads[j]:= Length( vectors.indices );
        fi;
        
    od;
    
    # gauss upwards:
    
    list := Filtered( heads, x->x<>0 );
    rank := Length( list );
    
    for j in [ncols,ncols-1..1] do
        head := heads[j];
        if head <> 0 then
            a := Difference( [1..head-1], heads{[j+1..ncols]} );
            for i in a do
                row_indices := vectors.indices[i];
                p := PositionSet( row_indices, j );
                if p <> fail then
                    row_entries := vectors.entries[i];
                    x := - row_entries[p];
                    AddRow( vectors.indices[ head ], vectors.entries[ head ] * x, row_indices, row_entries );
                fi;
            od;
        fi;
    od;
    
    #order rows:
    
    vectors.indices := vectors.indices{list};
    vectors.entries := vectors.entries{list};
    
    list := Filtered( [1..ncols], j -> heads[j] <> 0 );
    heads{list} := [1..rank]; #just for compatibility, vectors are ordered already
    
    return rec( heads := heads,
                vectors := SparseMatrix( rank, ncols, vectors.indices, vectors.entries, mat!.ring ) );
    
  end
);

##
InstallMethod( EchelonMatTransformationDestructive,
        "method for sparse matrices",
        [ IsSparseMatrix ],
  function( mat )
    local nrows,     # number of rows in <mat>
          ncols,     # number of columns in <mat>
          indices,
          entries,
          vectors,   # list of basis vectors
          heads,     # list of pivot positions in 'vectors'
          coeffs,
          relations,
          ring,
          i,         # loop over rows
          j,         # loop over columns
          T,
          head,
          x,
          rank,
          list,
          p;
    
    nrows := mat!.nrows;
    ncols := mat!.ncols;
    
    indices := mat!.indices;
    entries := mat!.entries;
    
    heads   := ListWithIdenticalEntries( ncols, 0 );
    vectors := rec( indices := [], entries := [] );
    coeffs := rec( indices := [], entries := [] );
    relations := rec( indices := [], entries := [] );
    
    ring := mat!.ring;
    
    if ring = "unknown" then
        ring := Rationals;
    fi;
    
    T := rec( indices := List( [ 1 .. nrows ], i -> [i] ), entries := List( [ 1 .. nrows ], i -> [ One( ring ) ] ) );
    
    for i in [ 1 .. nrows ] do
        
        # Reduce the row with the known basis vectors.
        p := 1;
        while p<=Length(indices[i]) do
            j := indices[i][p];
            head := heads[j];
            if head=0 then  # move to next entry in row mat[i]
                p := p+1;
            else # clear up mat[i][j]
                x := - entries[i][p];
                AddRow(coeffs.indices[ head ], coeffs.entries[ head ] * x, T.indices, T.entries, i);
                AddRow(vectors.indices[ head ], vectors.entries[ head ] * x, indices, entries, i);
            fi;
        od;
        
        if Length( indices[i] ) > 0 then
            # We found a new basis vector.
            x := Inverse( entries[i][1] );
            Add( coeffs.indices, T.indices[ i ] );
            Add( coeffs.entries, T.entries[ i ] * x );
            Add( vectors.indices, indices[i] );
            Add( vectors.entries, entries[i] * x );
            heads[indices[i][1]] := Length( vectors.indices );
        else
            Add( relations.indices, T.indices[ i ] );
            Add( relations.entries, T.entries[ i ] );
        fi;
        
    od;
    
    #order rows:
    list := Filtered( heads, IsPosInt );
    rank := Length( list );
    # not needed
    heads{Filtered( [1..ncols], j -> heads[j] <> 0 )} := [1..rank];
    
    vectors.indices := vectors.indices{list};
    vectors.entries := vectors.entries{list};
    
    coeffs.indices := coeffs.indices{list};
    coeffs.entries := coeffs.entries{list};
    
    # gauss upwards:
    for i in [1..rank] do
        # subtract vectors in j=[i+1..rank] from vector i to clear head entries
        p := 1;
        j := i+1;
        while p<=Length(vectors.indices[i]) and j<=rank do
            if vectors.indices[i][p]<vectors.indices[j][1] then
                p := p+1; continue; # move to next entry in row i
            fi;
            if vectors.indices[i][p]>vectors.indices[j][1] then
                j := j+1; continue; # move to next vector
            fi;
            x := -vectors.entries[i][p];
            AddRow(coeffs.indices[j], coeffs.entries[j] * x, coeffs.indices, coeffs.entries, i);
            AddRow(vectors.indices[j], vectors.entries[j] * x, vectors.indices, vectors.entries, i);
        od;
    od;
    
    return rec( heads := heads,
                vectors := SparseMatrix( rank, ncols, vectors.indices, vectors.entries, ring ),
                coeffs := SparseMatrix( rank, nrows, coeffs.indices, coeffs.entries, ring ),
                relations := SparseMatrix( nrows - rank, nrows, relations.indices, relations.entries, ring ) );
    
  end
);

##
InstallMethod( ReduceMatWithEchelonMat,
        "for sparse matrices over a ring, second argument must be in REF",
        [ IsSparseMatrix, IsSparseMatrix ],
  function( mat, N )
    local nrows1,
          ncols,
          nrows2,
          M,
          i,
          j,
          k,
          x,
          p,
          row1_indices,
          row1_entries,
          row2_indices;
    
    nrows1 :=  mat!.nrows;
    nrows2 := N!.nrows;
    
    if nrows1 = 0 or nrows2 = 0 then
        return rec( reduced_matrix := mat );
    fi;
    
    ncols := mat!.ncols;
    if ncols <> N!.ncols then
        return fail;
    elif ncols = 0 then
        return rec( reduced_matrix := mat );
    fi;
    
    M := CopyMat( mat );
    
    for i in [ 1 .. nrows2 ] do
        row2_indices := N!.indices[i];
        if Length( row2_indices ) > 0 then
            j := row2_indices[1];
            for k in [ 1 .. nrows1 ] do
                row1_indices := M!.indices[k];
                row1_entries := M!.entries[k];
                p := PositionSet( row1_indices, j );
		if p <> fail then
                    x := - row1_entries[p];
                    AddRow( row2_indices, N!.entries[i] * x, row1_indices, row1_entries );
                fi;
            od;
        fi;
    od;
    
    return rec( reduced_matrix := M );

  end
);

##
InstallMethod( ReduceMatWithEchelonMatTransformation,
        "for sparse matrices over a ring, second argument must be in REF",
        [ IsSparseMatrix, IsSparseMatrix ],
  function( mat, N )
    local nrows1,
          nrows2,
	  ring,
          M,
          T,
          i,
          j,
          k,
          x,
          p,
          row2_indices;
    
    nrows1 :=  mat!.nrows;
    nrows2 := N!.nrows;
    ring := mat!.ring;
    
    T := SparseZeroMatrix( nrows1, nrows2, ring );
    
    if nrows1 = 0 or nrows2 = 0 then
        return rec( reduced_matrix := mat, transformation := T );
    fi;
    
    if mat!.ncols <> N!.ncols then
        return fail;
    elif mat!.ncols = 0 then
        return rec( reduced_matrix := mat, transformation := T );
    fi;
    
    M := CopyMat( mat );
    
    for i in [ 1 .. nrows2 ] do
        row2_indices := N!.indices[i];
        if Length( row2_indices ) > 0 then
            j := row2_indices[1];
            for k in [ 1 .. nrows1 ] do
                p := PositionSet( M!.indices[k], j );
                if p <> fail then
                    x := - M!.entries[k][p];
                    AddRow( row2_indices, N!.entries[i] * x, M!.indices, M!.entries, k);
                    Add( T!.indices[k], i );
                    Add( T!.entries[k], x );
                fi;
            od;
        fi;
    od;
    
    return rec( reduced_matrix := M, transformation := T );
    
  end
);

##
InstallMethod( KernelEchelonMatDestructive,
        "method for sparse matrices",
        [ IsSparseMatrix, IsList ],
  function( mat, L )
    local nrows,
          ncols,
          indices,
          entries,
          vectors,
          heads,
          coeffs,
          relations,
          ring,
          i,
          j,
          T,
          head,
          x,
          rank,
          list,
          row_indices,
          row_entries,
          p,
          e;
    
    nrows := mat!.nrows;
    ncols := mat!.ncols;    
    indices := mat!.indices;
    entries := mat!.entries;    
    heads   := ListWithIdenticalEntries( ncols, 0 );
    vectors := rec( indices := [], entries := [] );
    coeffs := rec( indices := [], entries := [] );
    relations := rec( indices := [], entries := [] );
    
    ring := mat!.ring;
    
    if ring = "unknown" then
        ring := Rationals;
    fi;
    
    T := rec( indices := List( [ 1 .. nrows ] , i -> [] ), entries := List( [ 1 .. nrows ], i -> [] ) );
    for i in [ 1 .. Length( L ) ] do
        T.indices[L[i]] := [i];
        T.entries[L[i]] := [ One( ring ) ];
    od;
    
    for i in [ 1 .. nrows ] do
	row_indices := indices[i];        
        # Reduce the row with the known basis vectors.
        for j in [ 1 .. ncols ] do
            head := heads[j];
            if head <> 0 then
                p := PositionSet( row_indices, j );
                if p <> fail then
                    row_entries := entries[i];
                    x := - row_entries[p];
                    AddRow( vectors.indices[ head ], vectors.entries[ head ] * x, row_indices, row_entries );
                    AddRow( coeffs.indices[ head ], coeffs.entries[ head ] * x, T.indices[i], T.entries[i] );
                fi;
            fi;
        od;
        if Length( row_indices ) > 0 then
            j := row_indices[1];
            row_entries := entries[i];
            # We found a new basis vector.
            x := Inverse( row_entries[1] );
            if x = fail then
                TryNextMethod();
            fi;
            Add( vectors.indices, row_indices );
            Add( vectors.entries, row_entries * x );
            heads[j]:= Length( vectors.indices );
            Add( coeffs.indices, T.indices[ i ] );
            Add( coeffs.entries, T.entries[ i ] * x );
        else
            Add( relations.indices, T.indices[ i ] );
            Add( relations.entries, T.entries[ i ] );
        fi;
    od;
    
    return rec( relations := SparseMatrix( Length( relations.indices ), Length( L ), relations.indices, relations.entries, ring ) );
    
end );

##
InstallMethod( RankDestructive,
        "method for sparse matrices",
        [ IsSparseMatrix, IsInt ],
  function( mat, upper_boundary )
    local nrows,
          ncols,
          indices,
          entries,
          vectors,
          heads,
          coeffs,
          relations,
          ring,
          i,
          j,
          T,
          head,
          x,
          rank,
          list,
          row_indices,
          row_entries,
          p;
    
    nrows := mat!.nrows;
    ncols := mat!.ncols;
    indices := mat!.indices;
    entries := mat!.entries;
    heads   := ListWithIdenticalEntries( ncols, 0 );
    vectors := rec( indices := [], entries := [] );
    
    ring := mat!.ring;
    
    if ring = "unknown" then
        ring := Rationals;
    fi;
    
    for i in [ 1 .. nrows ] do
        row_indices := indices[i];
        # Reduce the row with the known basis vectors.
        for j in [ 1 .. ncols ] do
            head := heads[j];
            if head <> 0 then
                p := PositionSet( row_indices, j );
                if p <> fail then
                    row_entries := entries[i];
                    x := - row_entries[p];
                    AddRow( vectors.indices[ head ], vectors.entries[ head ] * x, row_indices, row_entries );
                fi;
            fi;
        od;
        if Length( row_indices ) > 0 then
            j := row_indices[1];
            row_entries := entries[i];
            # We found a new basis vector.
            x := Inverse( row_entries[1] );
            if x = fail then
                TryNextMethod();
            fi;
            Add( vectors.indices, row_indices );
            Add( vectors.entries, row_entries * x );
            heads[j] := Length( vectors.indices );
            if heads[j] = upper_boundary then
                return upper_boundary;
            fi;
        fi;
    od;
    
    return Length( vectors.indices );
    
  end
);