CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
4 Example
3
4
5
4.1 HomHom
6
7
The following example is taken from Section 2 of [BR06].
8
The computation takes place over the ring R=ℤ/2^8ℤ, which is directly
9
supported by the package Gauss.
10
11
Here we compute the (infinite) long exact homology sequence of the covariant
12
functor Hom(Hom(-,ℤ/2^7ℤ),ℤ/2^4ℤ) (and its left derived functors) applied to
13
the short exact sequence
14
0 -> M_=ℤ/2^2ℤ --alpha_1--> M=ℤ/2^5ℤ --alpha_2--> _M=ℤ/2^3ℤ -> 0.
15
16
 Example 
17
gap> LoadPackage( "Modules" );
18
true
19
gap> R := HomalgRingOfIntegers( 2^8 );
20
Z/256Z
21
gap> Display( R );
22
<An internal ring>
23
gap> M := LeftPresentation( [ 2^5 ], R );
24
<A cyclic left module presented by an unknown number of relations for a cyclic\
25
 generator>
26
gap> Display( M );
27
Z/256Z/< ZmodnZObj(32,256) >
28
gap> M;
29
<A cyclic left module presented by 1 relation for a cyclic generator>
30
gap> _M := LeftPresentation( [ 2^3 ], R );
31
<A cyclic left module presented by an unknown number of relations for a cyclic\
32
 generator>
33
gap> Display( _M );
34
Z/256Z/< ZmodnZObj(8,256) >
35
gap> _M;
36
<A cyclic left module presented by 1 relation for a cyclic generator>
37
gap> alpha2 := HomalgMap( [ 1 ], M, _M );
38
<A "homomorphism" of left modules>
39
gap> IsMorphism( alpha2 );
40
true
41
gap> alpha2;
42
<A homomorphism of left modules>
43
gap> Display( alpha2 );
44
 1
45

46
the map is currently represented by the above 1 x 1 matrix
47
gap> M_ := Kernel( alpha2 );
48
<A cyclic left module presented by yet unknown relations for a cyclic generato\
49
r>
50
gap> alpha1 := KernelEmb( alpha2 );
51
<A monomorphism of left modules>
52
gap> seq := HomalgComplex( alpha2 );
53
<An acyclic complex containing a single morphism of left modules at degrees 
54
[ 0 .. 1 ]>
55
gap> Add( seq, alpha1 );
56
gap> seq;
57
<A sequence containing 2 morphisms of left modules at degrees [ 0 .. 2 ]>
58
gap> IsShortExactSequence( seq );
59
true
60
gap> seq;
61
<A short exact sequence containing 2 morphisms of left modules at degrees 
62
[ 0 .. 2 ]>
63
gap> Display( seq );
64
-------------------------
65
at homology degree: 2
66
Z/256Z/< ZmodnZObj(4,256) > 
67
-------------------------
68
 24
69

70
the map is currently represented by the above 1 x 1 matrix
71
------------v------------
72
at homology degree: 1
73
Z/256Z/< ZmodnZObj(32,256) > 
74
-------------------------
75
 1
76

77
the map is currently represented by the above 1 x 1 matrix
78
------------v------------
79
at homology degree: 0
80
Z/256Z/< ZmodnZObj(8,256) > 
81
-------------------------
82
gap> K := LeftPresentation( [ 2^7 ], R );
83
<A cyclic left module presented by an unknown number of relations for a cyclic\
84
 generator>
85
gap> L := RightPresentation( [ 2^4 ], R );
86
<A cyclic right module on a cyclic generator satisfying an unknown number of r\
87
elations>
88
gap> triangle := LHomHom( 4, seq, K, L, "t" );
89
<An exact triangle containing 3 morphisms of left complexes at degrees 
90
[ 1, 2, 3, 1 ]>
91
gap> lehs := LongSequence( triangle );
92
<A sequence containing 14 morphisms of left modules at degrees [ 0 .. 14 ]>
93
gap> ByASmallerPresentation( lehs );
94
<A non-zero sequence containing 14 morphisms of left modules at degrees 
95
[ 0 .. 14 ]>
96
gap> IsExactSequence( lehs );
97
false
98
gap> lehs;
99
<A non-zero left acyclic complex containing 
100
14 morphisms of left modules at degrees [ 0 .. 14 ]>
101
gap> Assert( 0, IsLeftAcyclic( lehs ) );
102
gap> Display( lehs );
103
-------------------------
104
at homology degree: 14
105
Z/256Z/< ZmodnZObj(4,256) > 
106
-------------------------
107
 4
108

109
the map is currently represented by the above 1 x 1 matrix
110
------------v------------
111
at homology degree: 13
112
Z/256Z/< ZmodnZObj(8,256) > 
113
-------------------------
114
 6
115

116
the map is currently represented by the above 1 x 1 matrix
117
------------v------------
118
at homology degree: 12
119
Z/256Z/< ZmodnZObj(8,256) > 
120
-------------------------
121
 2
122

123
the map is currently represented by the above 1 x 1 matrix
124
------------v------------
125
at homology degree: 11
126
Z/256Z/< ZmodnZObj(4,256) > 
127
-------------------------
128
 4
129

130
the map is currently represented by the above 1 x 1 matrix
131
------------v------------
132
at homology degree: 10
133
Z/256Z/< ZmodnZObj(8,256) > 
134
-------------------------
135
 6
136

137
the map is currently represented by the above 1 x 1 matrix
138
------------v------------
139
at homology degree: 9
140
Z/256Z/< ZmodnZObj(8,256) > 
141
-------------------------
142
 2
143

144
the map is currently represented by the above 1 x 1 matrix
145
------------v------------
146
at homology degree: 8
147
Z/256Z/< ZmodnZObj(4,256) > 
148
-------------------------
149
 4
150

151
the map is currently represented by the above 1 x 1 matrix
152
------------v------------
153
at homology degree: 7
154
Z/256Z/< ZmodnZObj(8,256) > 
155
-------------------------
156
 6
157

158
the map is currently represented by the above 1 x 1 matrix
159
------------v------------
160
at homology degree: 6
161
Z/256Z/< ZmodnZObj(8,256) > 
162
-------------------------
163
 2
164

165
the map is currently represented by the above 1 x 1 matrix
166
------------v------------
167
at homology degree: 5
168
Z/256Z/< ZmodnZObj(4,256) > 
169
-------------------------
170
 4
171

172
the map is currently represented by the above 1 x 1 matrix
173
------------v------------
174
at homology degree: 4
175
Z/256Z/< ZmodnZObj(8,256) > 
176
-------------------------
177
 6
178

179
the map is currently represented by the above 1 x 1 matrix
180
------------v------------
181
at homology degree: 3
182
Z/256Z/< ZmodnZObj(8,256) > 
183
-------------------------
184
 2
185

186
the map is currently represented by the above 1 x 1 matrix
187
------------v------------
188
at homology degree: 2
189
Z/256Z/< ZmodnZObj(4,256) > 
190
-------------------------
191
 8
192

193
the map is currently represented by the above 1 x 1 matrix
194
------------v------------
195
at homology degree: 1
196
Z/256Z/< ZmodnZObj(16,256) > 
197
-------------------------
198
 1
199

200
the map is currently represented by the above 1 x 1 matrix
201
------------v------------
202
at homology degree: 0
203
Z/256Z/< ZmodnZObj(8,256) > 
204
-------------------------
205

206
207
208