Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346#! @Chapter Examples and Tests #! @Section Sweep #! $\href{https://terrytao.wordpress.com/2015/10/07/sweeping-a-matrix-rotates-its-graph/}{\textrm{Geometric interpretation of sweeping a matrix by Terence Tao.}}$ LoadPackage( "LinearAlgebraForCAP" ); LoadPackage( "GeneralizedMorphismsForCAP" ); #! @Example Q := HomalgFieldOfRationals();; V := VectorSpaceObject( 3, Q );; mat := HomalgMatrix( [ [ 9, 8, 7 ], [ 6, 5, 4 ], [ 3, 2, 1 ] ], 3, 3, Q );; alpha := VectorSpaceMorphism( V, mat, V );; graph := FiberProductEmbeddingInDirectSum( [ alpha, IdentityMorphism( V ) ] );; Display( graph ); #! [ [ 1, -2, 1, 0, 0, 0 ], #! [ -4/3, 7/3, 0, 2, 1, 0 ], #! [ 5/3, -8/3, 0, -1, 0, 1 ] ] #! #! A split monomorphism in Category of matrices over Q D := DirectSum( V, V );; rotmat := HomalgMatrix( [ [ 0, 0, 0, -1, 0, 0 ], [ 0, 1, 0, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0 ], [ 1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 1 ] ], 6, 6, Q );; rot := VectorSpaceMorphism( D, rotmat, D );; p := PreCompose( graph, rot );; Display( p ); #! [ [ 0, -2, 1, -1, 0, 0 ], #! [ 2, 7/3, 0, 4/3, 1, 0 ], #! [ -1, -8/3, 0, -5/3, 0, 1 ] ] #! #! A morphism in Category of matrices over Q pi1 := ProjectionInFactorOfDirectSum( [ V, V ], 1 );; pi2 := ProjectionInFactorOfDirectSum( [ V, V ], 2 );; reversed_arrow := PreCompose( p, pi1 );; arrow := PreCompose( p, pi2 );; g := GeneralizedMorphismBySpan( reversed_arrow, arrow );; IsHonest( g ); #! true sweep_1_alpha := HonestRepresentative( g );; Display( sweep_1_alpha ); #! [ [ -1/9, 8/9, 7/9 ], #! [ 2/3, -1/3, -2/3 ], #! [ 1/3, -2/3, -4/3 ] ] #! #! A morphism in Category of matrices over Q Display( alpha ); #! [ [ 9, 8, 7 ], #! [ 6, 5, 4 ], #! [ 3, 2, 1 ] ] #! #! A morphism in Category of matrices over Q #! @EndExample