Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X6 [33X[0;0YThe Tate Resolution[133X[101X234[1X6.1 [33X[0;0YThe Tate Resolution: Operations and Functions[133X[101X56[1X6.1-1 TateResolution[101X78[29X[2XTateResolution[102X( [3XM[103X, [3Xdegree_lowest[103X, [3Xdegree_highest[103X ) [32X operation9[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X cocomplex[133X1011[33X[0;0YCompute the Tate resolution of the sheaf [3XM[103X.[133X1213[4X[32X Example [32X[104X14[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x0..x3";;[127X[104X15[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X16[4X[25Xgap>[125X [27XA := KoszulDualRing( S, "e0..e3" );;[127X[104X17[4X[32X[104X1819[33X[0;0YIn the following we construct the different exterior powers of the cotangent20bundle shifted by [22X1[122X. Observe how a single [22X1[122X travels along the diagnoal in21the window [22X[ -3 .. 0 ] x [ 0 .. 3 ][122X.[133X22[33X[0;0YFirst we start with the structure sheaf with its Tate resolution:[133X2324[4X[32X Example [32X[104X25[4X[25Xgap>[125X [27XO := S^0;[127X[104X26[4X[28X<The graded free left module of rank 1 on a free generator>[128X[104X27[4X[25Xgap>[125X [27XT := TateResolution( O, -5, 5 );[127X[104X28[4X[28X<An acyclic cocomplex containing[128X[104X29[4X[28X10 morphisms of graded left modules at degrees [ -5 .. 5 ]>[128X[104X30[4X[25Xgap>[125X [27Xbetti := BettiTable( T );[127X[104X31[4X[28X<A Betti diagram of <An acyclic cocomplex containing [128X[104X32[4X[28X10 morphisms of graded left modules at degrees [ -5 .. 5 ]>>[128X[104X33[4X[25Xgap>[125X [27XDisplay( betti );[127X[104X34[4X[28Xtotal: 35 20 10 4 1 1 4 10 20 35 56 ? ? ?[128X[104X35[4X[28X----------|---|---|---|---|---|---|---|---|---|---|---|---|---|[128X[104X36[4X[28X 3: 35 20 10 4 1 . . . . . . 0 0 0[128X[104X37[4X[28X 2: * . . . . . . . . . . . 0 0[128X[104X38[4X[28X 1: * * . . . . . . . . . . . 0[128X[104X39[4X[28X 0: * * * . . . . . 1 4 10 20 35 56[128X[104X40[4X[28X----------|---|---|---|---|---|---|---|---S---|---|---|---|---|[128X[104X41[4X[28Xtwist: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5[128X[104X42[4X[28X---------------------------------------------------------------[128X[104X43[4X[28XEuler: -35 -20 -10 -4 -1 0 0 0 1 4 10 20 35 56[128X[104X44[4X[32X[104X4546[33X[0;0YThe Castelnuovo-Mumford regularity of the [13Xunderlying module[113X is distinguished47among the list of twists by the character [10X'V'[110X pointing to it. It is [13Xnot[113X an48invariant of the sheaf (see the next diagram).[133X49[33X[0;0YThe residue class field (i.e. S modulo the maximal homogeneous ideal):[133X5051[4X[32X Example [32X[104X52[4X[25Xgap>[125X [27Xk := HomalgMatrix( Indeterminates( S ), Length( Indeterminates( S ) ), 1, S );[127X[104X53[4X[28X<A 4 x 1 matrix over a graded ring>[128X[104X54[4X[25Xgap>[125X [27Xk := LeftPresentationWithDegrees( k );[127X[104X55[4X[28X<A graded cyclic left module presented by 4 relations for a cyclic generator>[128X[104X56[4X[32X[104X5758[33X[0;0YAnother way of constructing the structure sheaf:[133X5960[4X[32X Example [32X[104X61[4X[25Xgap>[125X [27XU0 := SyzygiesObject( 1, k );[127X[104X62[4X[28X<A graded torsion-free left module presented by yet unknown relations for 4 ge\[128X[104X63[4X[28Xnerators>[128X[104X64[4X[25Xgap>[125X [27XT0 := TateResolution( U0, -5, 5 );[127X[104X65[4X[28X<An acyclic cocomplex containing[128X[104X66[4X[28X10 morphisms of graded left modules at degrees [ -5 .. 5 ]>[128X[104X67[4X[25Xgap>[125X [27Xbetti0 := BettiTable( T0 );[127X[104X68[4X[28X<A Betti diagram of <An acyclic cocomplex containing [128X[104X69[4X[28X10 morphisms of graded left modules at degrees [ -5 .. 5 ]>>[128X[104X70[4X[25Xgap>[125X [27XDisplay( betti0 );[127X[104X71[4X[28Xtotal: 35 20 10 4 1 1 4 10 20 35 56 ? ? ?[128X[104X72[4X[28X----------|---|---|---|---|---|---|---|---|---|---|---|---|---|[128X[104X73[4X[28X 3: 35 20 10 4 1 . . . . . . 0 0 0[128X[104X74[4X[28X 2: * . . . . . . . . . . . 0 0[128X[104X75[4X[28X 1: * * . . . . . . . . . . . 0[128X[104X76[4X[28X 0: * * * . . . . . 1 4 10 20 35 56[128X[104X77[4X[28X----------|---|---|---|---|---|---|---|---S---|---|---|---|---|[128X[104X78[4X[28Xtwist: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5[128X[104X79[4X[28X---------------------------------------------------------------[128X[104X80[4X[28XEuler: -35 -20 -10 -4 -1 0 0 0 1 4 10 20 35 56[128X[104X81[4X[32X[104X8283[33X[0;0YThe cotangent bundle:[133X8485[4X[32X Example [32X[104X86[4X[25Xgap>[125X [27Xcotangent := SyzygiesObject( 2, k );[127X[104X87[4X[28X<A graded torsion-free left module presented by yet unknown relations for 6 ge\[128X[104X88[4X[28Xnerators>[128X[104X89[4X[25Xgap>[125X [27XIsFree( UnderlyingModule( cotangent ) );[127X[104X90[4X[28Xfalse[128X[104X91[4X[25Xgap>[125X [27XRank( cotangent );[127X[104X92[4X[28X3[128X[104X93[4X[25Xgap>[125X [27Xcotangent;[127X[104X94[4X[28X<A graded reflexive non-projective rank 3 left module presented by 4 relations\[128X[104X95[4X[28X for 6 generators>[128X[104X96[4X[25Xgap>[125X [27XProjectiveDimension( UnderlyingModule( cotangent ) );[127X[104X97[4X[28X2[128X[104X98[4X[32X[104X99100[33X[0;0Ythe cotangent bundle shifted by [22X1[122X with its Tate resolution:[133X101102[4X[32X Example [32X[104X103[4X[25Xgap>[125X [27XU1 := cotangent * S^1;[127X[104X104[4X[28X<A graded non-torsion left module presented by 4 relations for 6 generators>[128X[104X105[4X[25Xgap>[125X [27XT1 := TateResolution( U1, -5, 5 );[127X[104X106[4X[28X<An acyclic cocomplex containing[128X[104X107[4X[28X10 morphisms of graded left modules at degrees [ -5 .. 5 ]>[128X[104X108[4X[25Xgap>[125X [27Xbetti1 := BettiTable( T1 );[127X[104X109[4X[28X<A Betti diagram of <An acyclic cocomplex containing [128X[104X110[4X[28X10 morphisms of graded left modules at degrees [ -5 .. 5 ]>>[128X[104X111[4X[25Xgap>[125X [27XDisplay( betti1 );[127X[104X112[4X[28Xtotal: 120 70 36 15 4 1 6 20 45 84 140 ? ? ?[128X[104X113[4X[28X-----------|----|----|----|----|----|----|----|----|----|----|----|----|----|[128X[104X114[4X[28X 3: 120 70 36 15 4 . . . . . . 0 0 0[128X[104X115[4X[28X 2: * . . . . . . . . . . . 0 0[128X[104X116[4X[28X 1: * * . . . . . 1 . . . . . 0[128X[104X117[4X[28X 0: * * * . . . . . . 6 20 45 84 140[128X[104X118[4X[28X-----------|----|----|----|----|----|----|----|----|----S----|----|----|----|[128X[104X119[4X[28Xtwist: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5[128X[104X120[4X[28X-----------------------------------------------------------------------------[128X[104X121[4X[28XEuler: -120 -70 -36 -15 -4 0 0 -1 0 6 20 45 84 140[128X[104X122[4X[32X[104X123124[33X[0;0YThe second power [22XU^2[122X of the shifted cotangent bundle [22XU=U^1[122X and its Tate125resolution:[133X126127[4X[32X Example [32X[104X128[4X[25Xgap>[125X [27XU2 := SyzygiesObject( 3, k ) * S^2;[127X[104X129[4X[28X<A graded rank 3 left module presented by 1 relation for 4 generators>[128X[104X130[4X[25Xgap>[125X [27XT2 := TateResolution( U2, -5, 5 );[127X[104X131[4X[28X<An acyclic cocomplex containing[128X[104X132[4X[28X10 morphisms of graded left modules at degrees [ -5 .. 5 ]>[128X[104X133[4X[25Xgap>[125X [27Xbetti2 := BettiTable( T2 );[127X[104X134[4X[28X<A Betti diagram of <An acyclic cocomplex containing [128X[104X135[4X[28X10 morphisms of graded left modules at degrees [ -5 .. 5 ]>>[128X[104X136[4X[25Xgap>[125X [27XDisplay( betti2 );[127X[104X137[4X[28Xtotal: 140 84 45 20 6 1 4 15 36 70 120 ? ? ?[128X[104X138[4X[28X-----------|----|----|----|----|----|----|----|----|----|----|----|----|----|[128X[104X139[4X[28X 3: 140 84 45 20 6 . . . . . . 0 0 0[128X[104X140[4X[28X 2: * . . . . . 1 . . . . . 0 0[128X[104X141[4X[28X 1: * * . . . . . . . . . . . 0[128X[104X142[4X[28X 0: * * * . . . . . . 4 15 36 70 120[128X[104X143[4X[28X-----------|----|----|----|----|----|----|----|----|----S----|----|----|----|[128X[104X144[4X[28Xtwist: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5[128X[104X145[4X[28X-----------------------------------------------------------------------------[128X[104X146[4X[28XEuler: -140 -84 -45 -20 -6 0 1 0 0 4 15 36 70 120[128X[104X147[4X[32X[104X148149[33X[0;0YThe third power [22XU^3[122X of the shifted cotangent bundle [22XU=U^1[122X and its Tate150resolution:[133X151152[4X[32X Example [32X[104X153[4X[25Xgap>[125X [27XU3 := SyzygiesObject( 4, k ) * S^3;[127X[104X154[4X[28X<A graded free left module of rank 1 on a free generator>[128X[104X155[4X[25Xgap>[125X [27XDisplay( U3 );[127X[104X156[4X[28XQ[x0,x1,x2,x3]^(1 x 1)[128X[104X157[4X[28X[128X[104X158[4X[28X(graded, degree of generator: 1)[128X[104X159[4X[25Xgap>[125X [27XT3 := TateResolution( U3, -5, 5 );[127X[104X160[4X[28X<An acyclic cocomplex containing[128X[104X161[4X[28X10 morphisms of graded left modules at degrees [ -5 .. 5 ]>[128X[104X162[4X[25Xgap>[125X [27Xbetti3 := BettiTable( T3 );[127X[104X163[4X[28X<A Betti diagram of <An acyclic cocomplex containing [128X[104X164[4X[28X10 morphisms of graded left modules at degrees [ -5 .. 5 ]>>[128X[104X165[4X[25Xgap>[125X [27XDisplay( betti3 );[127X[104X166[4X[28Xtotal: 56 35 20 10 4 1 1 4 10 20 35 ? ? ?[128X[104X167[4X[28X----------|---|---|---|---|---|---|---|---|---|---|---|---|---|[128X[104X168[4X[28X 3: 56 35 20 10 4 1 . . . . . 0 0 0[128X[104X169[4X[28X 2: * . . . . . . . . . . . 0 0[128X[104X170[4X[28X 1: * * . . . . . . . . . . . 0[128X[104X171[4X[28X 0: * * * . . . . . . 1 4 10 20 35[128X[104X172[4X[28X----------|---|---|---|---|---|---|---|---|---S---|---|---|---|[128X[104X173[4X[28Xtwist: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5[128X[104X174[4X[28X---------------------------------------------------------------[128X[104X175[4X[28XEuler: -56 -35 -20 -10 -4 -1 0 0 0 1 4 10 20 35[128X[104X176[4X[32X[104X177178[33X[0;0YAnother way to construct [22XU^2=U^(3-1)[122X:[133X179180[4X[32X Example [32X[104X181[4X[25Xgap>[125X [27Xu2 := GradedHom( U1, S^(-1) );[127X[104X182[4X[28X<A graded torsion-free right module on 4 generators satisfying yet unknown rel\[128X[104X183[4X[28Xations>[128X[104X184[4X[25Xgap>[125X [27Xt2 := TateResolution( u2, -5, 5 );[127X[104X185[4X[28X<An acyclic cocomplex containing[128X[104X186[4X[28X10 morphisms of graded right modules at degrees [ -5 .. 5 ]>[128X[104X187[4X[25Xgap>[125X [27XBettiTable( t2 );[127X[104X188[4X[28X<A Betti diagram of <An acyclic cocomplex containing [128X[104X189[4X[28X10 morphisms of graded right modules at degrees [ -5 .. 5 ]>>[128X[104X190[4X[25Xgap>[125X [27XDisplay( last );[127X[104X191[4X[28Xtotal: 140 84 45 20 6 1 4 15 36 70 120 ? ? ?[128X[104X192[4X[28X-----------|----|----|----|----|----|----|----|----|----|----|----|----|----|[128X[104X193[4X[28X 3: 140 84 45 20 6 . . . . . . 0 0 0[128X[104X194[4X[28X 2: * . . . . . 1 . . . . . 0 0[128X[104X195[4X[28X 1: * * . . . . . . . . . . . 0[128X[104X196[4X[28X 0: * * * . . . . . . 4 15 36 70 120[128X[104X197[4X[28X-----------|----|----|----|----|----|----|----|----|----S----|----|----|----|[128X[104X198[4X[28Xtwist: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5[128X[104X199[4X[28X-----------------------------------------------------------------------------[128X[104X200[4X[28XEuler: -140 -84 -45 -20 -6 0 1 0 0 4 15 36 70 120[128X[104X201[4X[32X[104X202203204205