CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
6 The Tate Resolution
3
4
5
6.1 The Tate Resolution: Operations and Functions
6
7
6.1-1 TateResolution
8
9
TateResolution( M, degree_lowest, degree_highest )  operation
10
Returns: a homalg cocomplex
11
12
Compute the Tate resolution of the sheaf M.
13
14
 Example 
15
gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "x0..x3";;
16
gap> S := GradedRing( R );;
17
gap> A := KoszulDualRing( S, "e0..e3" );;
18

19
20
In the following we construct the different exterior powers of the cotangent
21
bundle shifted by 1. Observe how a single 1 travels along the diagnoal in
22
the window [ -3 .. 0 ] x [ 0 .. 3 ].
23
First we start with the structure sheaf with its Tate resolution:
24
25
 Example 
26
gap> O := S^0;
27
<The graded free left module of rank 1 on a free generator>
28
gap> T := TateResolution( O, -5, 5 );
29
<An acyclic cocomplex containing
30
10 morphisms of graded left modules at degrees [ -5 .. 5 ]>
31
gap> betti := BettiTable( T );
32
<A Betti diagram of <An acyclic cocomplex containing 
33
10 morphisms of graded left modules at degrees [ -5 .. 5 ]>>
34
gap> Display( betti );
35
total: 35 20 10 4 1 1 4 10 20 35 56 ? ? ?
36
----------|---|---|---|---|---|---|---|---|---|---|---|---|---|
37
 3: 35 20 10 4 1 . . . . . . 0 0 0
38
 2: * . . . . . . . . . . . 0 0
39
 1: * * . . . . . . . . . . . 0
40
 0: * * * . . . . . 1 4 10 20 35 56
41
----------|---|---|---|---|---|---|---|---S---|---|---|---|---|
42
twist: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
43
---------------------------------------------------------------
44
Euler: -35 -20 -10 -4 -1 0 0 0 1 4 10 20 35 56
45

46
47
The Castelnuovo-Mumford regularity of the underlying module is distinguished
48
among the list of twists by the character 'V' pointing to it. It is not an
49
invariant of the sheaf (see the next diagram).
50
The residue class field (i.e. S modulo the maximal homogeneous ideal):
51
52
 Example 
53
gap> k := HomalgMatrix( Indeterminates( S ), Length( Indeterminates( S ) ), 1, S );
54
<A 4 x 1 matrix over a graded ring>
55
gap> k := LeftPresentationWithDegrees( k );
56
<A graded cyclic left module presented by 4 relations for a cyclic generator>
57

58
59
Another way of constructing the structure sheaf:
60
61
 Example 
62
gap> U0 := SyzygiesObject( 1, k );
63
<A graded torsion-free left module presented by yet unknown relations for 4 ge\
64
nerators>
65
gap> T0 := TateResolution( U0, -5, 5 );
66
<An acyclic cocomplex containing
67
10 morphisms of graded left modules at degrees [ -5 .. 5 ]>
68
gap> betti0 := BettiTable( T0 );
69
<A Betti diagram of <An acyclic cocomplex containing 
70
10 morphisms of graded left modules at degrees [ -5 .. 5 ]>>
71
gap> Display( betti0 );
72
total: 35 20 10 4 1 1 4 10 20 35 56 ? ? ?
73
----------|---|---|---|---|---|---|---|---|---|---|---|---|---|
74
 3: 35 20 10 4 1 . . . . . . 0 0 0
75
 2: * . . . . . . . . . . . 0 0
76
 1: * * . . . . . . . . . . . 0
77
 0: * * * . . . . . 1 4 10 20 35 56
78
----------|---|---|---|---|---|---|---|---S---|---|---|---|---|
79
twist: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
80
---------------------------------------------------------------
81
Euler: -35 -20 -10 -4 -1 0 0 0 1 4 10 20 35 56
82

83
84
The cotangent bundle:
85
86
 Example 
87
gap> cotangent := SyzygiesObject( 2, k );
88
<A graded torsion-free left module presented by yet unknown relations for 6 ge\
89
nerators>
90
gap> IsFree( UnderlyingModule( cotangent ) );
91
false
92
gap> Rank( cotangent );
93
3
94
gap> cotangent;
95
<A graded reflexive non-projective rank 3 left module presented by 4 relations\
96
 for 6 generators>
97
gap> ProjectiveDimension( UnderlyingModule( cotangent ) );
98
2
99

100
101
the cotangent bundle shifted by 1 with its Tate resolution:
102
103
 Example 
104
gap> U1 := cotangent * S^1;
105
<A graded non-torsion left module presented by 4 relations for 6 generators>
106
gap> T1 := TateResolution( U1, -5, 5 );
107
<An acyclic cocomplex containing
108
10 morphisms of graded left modules at degrees [ -5 .. 5 ]>
109
gap> betti1 := BettiTable( T1 );
110
<A Betti diagram of <An acyclic cocomplex containing 
111
10 morphisms of graded left modules at degrees [ -5 .. 5 ]>>
112
gap> Display( betti1 );
113
total: 120 70 36 15 4 1 6 20 45 84 140 ? ? ?
114
-----------|----|----|----|----|----|----|----|----|----|----|----|----|----|
115
 3: 120 70 36 15 4 . . . . . . 0 0 0
116
 2: * . . . . . . . . . . . 0 0
117
 1: * * . . . . . 1 . . . . . 0
118
 0: * * * . . . . . . 6 20 45 84 140
119
-----------|----|----|----|----|----|----|----|----|----S----|----|----|----|
120
twist: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
121
-----------------------------------------------------------------------------
122
Euler: -120 -70 -36 -15 -4 0 0 -1 0 6 20 45 84 140
123

124
125
The second power U^2 of the shifted cotangent bundle U=U^1 and its Tate
126
resolution:
127
128
 Example 
129
gap> U2 := SyzygiesObject( 3, k ) * S^2;
130
<A graded rank 3 left module presented by 1 relation for 4 generators>
131
gap> T2 := TateResolution( U2, -5, 5 );
132
<An acyclic cocomplex containing
133
10 morphisms of graded left modules at degrees [ -5 .. 5 ]>
134
gap> betti2 := BettiTable( T2 );
135
<A Betti diagram of <An acyclic cocomplex containing 
136
10 morphisms of graded left modules at degrees [ -5 .. 5 ]>>
137
gap> Display( betti2 );
138
total: 140 84 45 20 6 1 4 15 36 70 120 ? ? ?
139
-----------|----|----|----|----|----|----|----|----|----|----|----|----|----|
140
 3: 140 84 45 20 6 . . . . . . 0 0 0
141
 2: * . . . . . 1 . . . . . 0 0
142
 1: * * . . . . . . . . . . . 0
143
 0: * * * . . . . . . 4 15 36 70 120
144
-----------|----|----|----|----|----|----|----|----|----S----|----|----|----|
145
twist: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
146
-----------------------------------------------------------------------------
147
Euler: -140 -84 -45 -20 -6 0 1 0 0 4 15 36 70 120
148

149
150
The third power U^3 of the shifted cotangent bundle U=U^1 and its Tate
151
resolution:
152
153
 Example 
154
gap> U3 := SyzygiesObject( 4, k ) * S^3;
155
<A graded free left module of rank 1 on a free generator>
156
gap> Display( U3 );
157
Q[x0,x1,x2,x3]^(1 x 1)
158

159
(graded, degree of generator: 1)
160
gap> T3 := TateResolution( U3, -5, 5 );
161
<An acyclic cocomplex containing
162
10 morphisms of graded left modules at degrees [ -5 .. 5 ]>
163
gap> betti3 := BettiTable( T3 );
164
<A Betti diagram of <An acyclic cocomplex containing 
165
10 morphisms of graded left modules at degrees [ -5 .. 5 ]>>
166
gap> Display( betti3 );
167
total: 56 35 20 10 4 1 1 4 10 20 35 ? ? ?
168
----------|---|---|---|---|---|---|---|---|---|---|---|---|---|
169
 3: 56 35 20 10 4 1 . . . . . 0 0 0
170
 2: * . . . . . . . . . . . 0 0
171
 1: * * . . . . . . . . . . . 0
172
 0: * * * . . . . . . 1 4 10 20 35
173
----------|---|---|---|---|---|---|---|---|---S---|---|---|---|
174
twist: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
175
---------------------------------------------------------------
176
Euler: -56 -35 -20 -10 -4 -1 0 0 0 1 4 10 20 35
177

178
179
Another way to construct U^2=U^(3-1):
180
181
 Example 
182
gap> u2 := GradedHom( U1, S^(-1) );
183
<A graded torsion-free right module on 4 generators satisfying yet unknown rel\
184
ations>
185
gap> t2 := TateResolution( u2, -5, 5 );
186
<An acyclic cocomplex containing
187
10 morphisms of graded right modules at degrees [ -5 .. 5 ]>
188
gap> BettiTable( t2 );
189
<A Betti diagram of <An acyclic cocomplex containing 
190
10 morphisms of graded right modules at degrees [ -5 .. 5 ]>>
191
gap> Display( last );
192
total: 140 84 45 20 6 1 4 15 36 70 120 ? ? ?
193
-----------|----|----|----|----|----|----|----|----|----|----|----|----|----|
194
 3: 140 84 45 20 6 . . . . . . 0 0 0
195
 2: * . . . . . 1 . . . . . 0 0
196
 1: * * . . . . . . . . . . . 0
197
 0: * * * . . . . . . 4 15 36 70 120
198
-----------|----|----|----|----|----|----|----|----|----S----|----|----|----|
199
twist: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
200
-----------------------------------------------------------------------------
201
Euler: -140 -84 -45 -20 -6 0 1 0 0 4 15 36 70 120
202

203
204
205