Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346LoadPackage( "GradedRingForHomalg" ); R := HomalgFieldOfRationalsInDefaultCAS( ) * "x0..x3"; S := GradedRing( R ); A := KoszulDualRing( S, "e0..e3" ); LoadPackage( "GradedModules" ); ## the residue class field (i.e. S modulo the maximal homogeneous ideal) k := HomalgMatrix( Indeterminates( S ), Length( Indeterminates( S ) ), 1, S ); k := LeftPresentationWithDegrees( k ); ## the sheaf supported on a point p := HomalgMatrix( Indeterminates( S ){[ 1 .. Length( Indeterminates( S ) ) - 1 ]}, 1, Length( Indeterminates( S ) ) - 1, S ); p := RightPresentationWithDegrees( p ); ## the sheaf supported on a line l := HomalgMatrix( Indeterminates( S ){[ 1 .. Length( Indeterminates( S ) ) - 2 ]}, 1, Length( Indeterminates( S ) ) - 2, S ); l := RightPresentationWithDegrees( l ); ## the twisted line bundle O(a) O := a -> S^a; ## the cotangent bundle cotangent := SyzygiesObject( 2, k ); ## the canonical bundle omega := S^(-3-1); tate := TateResolution( cotangent, -5, 5 ); betti := BettiTable( tate ); Assert( 0, MatrixOfDiagram( betti ) = [ [ 189, 120, 70, 36, 15, 4, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 6, 20, 45, 84 ] ] ); Display( betti );