Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346## <#GAPDoc Label="Schenck-3.2"> ## <Subsection Label="Schenck-3.2"> ## <Heading>Schenck-3.2</Heading> ## This is an example from Section 3.2 in <Cite Key="Sch"/>. ## <Example><![CDATA[ ## gap> Qxyz := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";; ## gap> mmat := HomalgMatrix( "[ x, x^3 + y^3 + z^3 ]", 1, 2, Qxyz ); ## <A 1 x 2 matrix over an external ring> ## gap> S := GradedRing( Qxyz );; ## gap> M := RightPresentationWithDegrees( mmat, S ); ## <A graded cyclic right module on a cyclic generator satisfying 2 relations> ## gap> Mr := Resolution( M ); ## <A right acyclic complex containing ## 2 morphisms of graded right modules at degrees [ 0 .. 2 ]> ## gap> bettiM := BettiTable( Mr ); ## <A Betti diagram of <A right acyclic complex containing ## 2 morphisms of graded right modules at degrees [ 0 .. 2 ]>> ## gap> Display( bettiM ); ## total: 1 2 1 ## -------------- ## 0: 1 1 . ## 1: . . . ## 2: . 1 1 ## -------------- ## degree: 0 1 2 ## gap> R := GradedRing( CoefficientsRing( S ) * "x,y,z,w" );; ## gap> nmat := HomalgMatrix( "[ z^2 - y*w, y*z - x*w, y^2 - x*z ]", 1, 3, R ); ## <A 1 x 3 matrix over a graded ring> ## gap> N := RightPresentationWithDegrees( nmat ); ## <A graded cyclic right module on a cyclic generator satisfying 3 relations> ## gap> Nr := Resolution( N ); ## <A right acyclic complex containing ## 2 morphisms of graded right modules at degrees [ 0 .. 2 ]> ## gap> bettiN := BettiTable( Nr ); ## <A Betti diagram of <A right acyclic complex containing ## 2 morphisms of graded right modules at degrees [ 0 .. 2 ]>> ## gap> Display( bettiN ); ## total: 1 3 2 ## -------------- ## 0: 1 . . ## 1: . 3 2 ## -------------- ## degree: 0 1 2 ## ]]></Example> ## </Subsection> ## <#/GAPDoc> LoadPackage( "RingsForHomalg" ); Qxyz := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z"; mmat := HomalgMatrix( "[ x, x^3 + y^3 + z^3 ]", 1, 2, Qxyz ); LoadPackage( "GradedRingForHomalg" ); S := GradedRing( Qxyz );; LoadPackage( "GradedModules" ); M := RightPresentationWithDegrees( mmat, S ); Mr := Resolution( M ); bettiM := BettiTable( Mr ); Display( bettiM ); Assert( 0, MatrixOfDiagram( bettiM ) = [ [ 1, 1, 0 ], [ 0, 0, 0 ], [ 0, 1, 1 ] ] ); Print( "\n" ); R := GradedRing( CoefficientsRing( S ) * "x,y,z,w" );; nmat := HomalgMatrix( "[ z^2 - y*w, y*z - x*w, y^2 - x*z ]", 1, 3, R ); N := RightPresentationWithDegrees( nmat, R ); Nr := Resolution( N ); bettiN := BettiTable( Nr ); Display( bettiN ); Assert( 0, MatrixOfDiagram( bettiN ) = [ [ 1, 0, 0 ], [ 0, 3, 2 ] ] );