Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X4 [33X[0;0YGraded Rings[133X[101X23[33X[0;0YThe package [5XGradedRingForHomalg[105X defines the classes of graded rings, ring4elements and matrices over such rings. These three objects can be used as5data structures defined in [5XMatricesForHomalg[105X on which the [5Xhomalg[105X project can6rely to do homological computations over graded rings.[133X78[33X[0;0YThe graded rings most prominently can be used with methods known from9general [5Xhomalg[105X rings. The methods for doing the computations are presented10in the appendix ([14XB[114X), since they are not for external use. The new attributes11and operations are documented here.[133X1213[33X[0;0YSince the objects inplemented here are representations from objects14elsewhere in the [5Xhomalg[105X project (i.e. [5XMatricesForHomalg[105X), we want to stress15that there are many other operations in [5XMatricesForHomalg[105X, which can be used16in connection with the ones presented here. A few of them can be found in17the examples and the appendix of this documentation.[133X181920[1X4.1 [33X[0;0YGraded Rings: Category and Representations[133X[101X2122[1X4.1-1 IsHomalgGradedRingRep[101X2324[29X[2XIsHomalgGradedRingRep[102X( [3XR[103X ) [32X Representation25[6XReturns:[106X [33X[0;10Ytrue or false[133X2627[33X[0;0YThe representation of [5Xhomalg[105X graded rings.[133X2829[33X[0;0Y(It is a subrepresentation of the [5XGAP[105X representation[133X30[33X[0;0Y[10XIsHomalgRingOrFinitelyPresentedModuleRep[110X.)[133X3132[4X[32X Code [32X[104X33[4XDeclareRepresentation( "IsHomalgGradedRingRep",[104X34[4X IsHomalgGradedRing and[104X35[4X IsHomalgGradedRingOrGradedModuleRep,[104X36[4X [ "ring" ] );[104X37[4X[32X[104X3839[1X4.1-2 IsHomalgGradedRingElementRep[101X4041[29X[2XIsHomalgGradedRingElementRep[102X( [3Xr[103X ) [32X Representation42[6XReturns:[106X [33X[0;10Ytrue or false[133X4344[33X[0;0YThe representation of elements of [5Xhomalg[105X graded rings.[133X4546[33X[0;0Y(It is a representation of the [5XGAP[105X category [10XIsHomalgRingElement[110X.)[133X4748[4X[32X Code [32X[104X49[4XDeclareRepresentation( "IsHomalgGradedRingElementRep",[104X50[4X IsHomalgGradedRingElement,[104X51[4X [ ] );[104X52[4X[32X[104X535455[1X4.2 [33X[0;0YGraded Rings: Constructors[133X[101X5657[1X4.2-1 HomalgGradedRingElement[101X5859[29X[2XHomalgGradedRingElement[102X( [3Xnumer[103X, [3Xdenom[103X, [3XR[103X ) [32X function60[29X[2XHomalgGradedRingElement[102X( [3Xnumer[103X, [3XR[103X ) [32X function61[6XReturns:[106X [33X[0;10Ya graded ring element[133X6263[33X[0;0YCreates the graded ring element [22X[3Xnumer[103X/[3Xdenom[103X[122X or in the second case [22X[3Xnumer[103X/1[122X64for the graded ring [3XR[103X. Both [3Xnumer[103X and [3Xdenom[103X may either be a string65describing a valid global ring element or from the global ring or66computation ring.[133X676869[1X4.3 [33X[0;0YGraded Rings: Attributes[133X[101X7071[1X4.3-1 DegreeGroup[101X7273[29X[2XDegreeGroup[102X( [3XS[103X ) [32X attribute74[6XReturns:[106X [33X[0;10Ya left ℤ-module[133X7576[33X[0;0YThe degree Abelian group of the commutative graded ring [3XS[103X.[133X7778[1X4.3-2 CommonNonTrivialWeightOfIndeterminates[101X7980[29X[2XCommonNonTrivialWeightOfIndeterminates[102X( [3XS[103X ) [32X attribute81[6XReturns:[106X [33X[0;10Ya degree[133X8283[33X[0;0YThe common nontrivial weight of the indeterminates of the graded ring [3XS[103X if84it exists. Otherwise an error is issued. WARNING: Since the DegreeGroup and85WeightsOfIndeterminates are in some cases bound together, you MUST not set86the DegreeGroup by hand and let the algorithm create the weights. Set both87by hand, set only weights or use the method WeightsOfIndeterminates to set88both. Never set the DegreeGroup without the WeightsOfIndeterminates, because89it simply wont work![133X9091[1X4.3-3 WeightsOfIndeterminates[101X9293[29X[2XWeightsOfIndeterminates[102X( [3XS[103X ) [32X attribute94[6XReturns:[106X [33X[0;10Ya list or listlist of integers[133X9596[33X[0;0YThe list of degrees of the indeterminates of the graded ring [3XS[103X.[133X9798[1X4.3-4 MatrixOfWeightsOfIndeterminates[101X99100[29X[2XMatrixOfWeightsOfIndeterminates[102X( [3XS[103X ) [32X attribute101[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X matrix[133X102103[33X[0;0YA [5Xhomalg[105X matrix where the list (or listlist) of degrees of the104indeterminates of the graded ring [3XS[103X is stored.[133X105106107[1X4.4 [33X[0;0YGraded Rings: Operations and Functions[133X[101X108109[1X4.4-1 UnderlyingNonGradedRing[101X110111[29X[2XUnderlyingNonGradedRing[102X( [3XR[103X ) [32X operation112[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X ring[133X113114[33X[0;0YInternally there is a ring, in which computations take place.[133X115116[1X4.4-2 UnderlyingNonGradedRing[101X117118[29X[2XUnderlyingNonGradedRing[102X( [3Xr[103X ) [32X operation119[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X ring[133X120121[33X[0;0YInternally there is a ring, in which computations take place.[133X122123[1X4.4-3 Name[101X124125[29X[2XName[102X( [3Xr[103X ) [32X operation126[6XReturns:[106X [33X[0;10Ya string[133X127128[33X[0;0YThe name of the graded ring element [3Xr[103X.[133X129130131132