Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X5 [33X[0;0YHomogeneous Matrices[133X[101X23[33X[0;0YThe package [5XGradedRingForHomalg[105X defines the classes of graded rings, ring4elements and homogeneous matrices over such rings. These three objects can5be used as data structures defined in [5XMatricesForHomalg[105X on which the [5Xhomalg[105X6project can rely to do homological computations over graded rings.[133X78[33X[0;0YThe graded rings most prominently can be used with methods known from9general [5Xhomalg[105X rings. The methods for doing the computations are presented10in the appendix ([14XB[114X), since they are not for external use. The new attributes11and operations are documented here.[133X1213[33X[0;0YSince the objects inplemented here are representations from objects14elsewhere in the [5Xhomalg[105X project (i.e. [5XMatricesForHomalg[105X), we want to stress15that there are many other operations in [5XMatricesForHomalg[105X, which can be used16in connection with the ones presented here. A few of them can be found in17the examples and the appendix of this documentation.[133X181920[1X5.1 [33X[0;0YHomogeneous Matrices: Category and Representations[133X[101X2122[1X5.1-1 IsHomalgMatrixOverGradedRingRep[101X2324[29X[2XIsHomalgMatrixOverGradedRingRep[102X( [3XA[103X ) [32X Representation25[6XReturns:[106X [33X[0;10Ytrue or false[133X2627[33X[0;0YThe representation of [5Xhomalg[105X matrices with entries in a [5Xhomalg[105X graded ring.[133X2829[33X[0;0Y(It is a representation of the [5XGAP[105X category [10XIsMatrixOverGradedRing[110X.)[133X3031[4X[32X Code [32X[104X32[4XDeclareRepresentation( "IsHomalgMatrixOverGradedRingRep",[104X33[4X IsMatrixOverGradedRing,[104X34[4X [ ] );[104X35[4X[32X[104X363738[1X5.2 [33X[0;0YHomogeneous Matrices: Constructors[133X[101X3940[1X5.2-1 MatrixOverGradedRing[101X4142[29X[2XMatrixOverGradedRing[102X( [3Xmat[103X, [3XS[103X ) [32X function43[6XReturns:[106X [33X[0;10Ya matrix over a graded ring[133X4445[33X[0;0YCreates a matrix for the graded ring [3XS[103X, where [3Xmat[103X is a matrix over46[10XUnderlyingNonGradedRing[110X([3XS[103X).[133X474849[1X5.3 [33X[0;0YHomogeneous Matrices: Attributes[133X[101X5051[1X5.3-1 DegreesOfEntries[101X5253[29X[2XDegreesOfEntries[102X( [3XA[103X ) [32X attribute54[6XReturns:[106X [33X[0;10Ya listlist of degrees/multi-degrees[133X5556[33X[0;0YThe matrix of degrees of the matrix [3XA[103X.[133X5758[1X5.3-2 NonTrivialDegreePerRow[101X5960[29X[2XNonTrivialDegreePerRow[102X( [3XA[103X[, [3Xcol_degrees[103X] ) [32X attribute61[6XReturns:[106X [33X[0;10Ya list of degrees/multi-degrees[133X6263[33X[0;0YThe list of first nontrivial degree per row of the matrix [3XA[103X.[133X6465[1X5.3-3 NonTrivialDegreePerColumn[101X6667[29X[2XNonTrivialDegreePerColumn[102X( [3XA[103X[, [3Xrow_degrees[103X] ) [32X attribute68[6XReturns:[106X [33X[0;10Ya list of degrees/multi-degrees[133X6970[33X[0;0YThe list of first nontrivial degree per column of the matrix [3XA[103X.[133X717273[1X5.4 [33X[0;0YHomogeneous Matrices: Operations and Functions[133X[101X7475[1X5.4-1 UnderlyingNonGradedRing[101X7677[29X[2XUnderlyingNonGradedRing[102X( [3Xmat[103X ) [32X operation78[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X ring[133X7980[33X[0;0YThe nongraded ring underlying [10XHomalgRing[110X([3Xmat[103X).[133X8182[1X5.4-2 SetMatElm[101X8384[29X[2XSetMatElm[102X( [3Xmat[103X, [3Xi[103X, [3Xj[103X, [3Xr[103X, [3XR[103X ) [32X operation8586[33X[0;0YChanges the entry ([3Xi,j[103X) of the matrix [3Xmat[103X to the value [3Xr[103X. Here [3XR[103X is the87graded [5Xhomalg[105X ring involved in these computations.[133X8889[1X5.4-3 AddToMatElm[101X9091[29X[2XAddToMatElm[102X( [3Xmat[103X, [3Xi[103X, [3Xj[103X, [3Xr[103X, [3XR[103X ) [32X operation9293[33X[0;0YChanges the entry ([3Xi,j[103X) of the matrix [3Xmat[103X by adding the value [3Xr[103X to it. Here94[3XR[103X is the (graded) [5Xhomalg[105X ring involved in these computations.[133X9596[1X5.4-4 MatElmAsString[101X9798[29X[2XMatElmAsString[102X( [3Xmat[103X, [3Xi[103X, [3Xj[103X, [3XR[103X ) [32X operation99[6XReturns:[106X [33X[0;10Ya string[133X100101[33X[0;0YReturns the entry ([3Xi,j[103X) of the matrix [3Xmat[103X as a string. Here [3XR[103X is the102(graded) [5Xhomalg[105X ring involved in these computations.[133X103104[1X5.4-5 MatElm[101X105106[29X[2XMatElm[102X( [3Xmat[103X, [3Xi[103X, [3Xj[103X, [3XR[103X ) [32X operation107[6XReturns:[106X [33X[0;10Ya graded ring element[133X108109[33X[0;0YReturns the entry ([3Xi,j[103X) of the matrix [3Xmat[103X. Here [3XR[103X is the (graded) [5Xhomalg[105X110ring involved in these computations.[133X111112113114