Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1XB [33X[0;0YOverview of the [5XGradedRingForHomalg[105X[101X[1X Package Source Code[133X[101X23[33X[0;0YThis appendix is included in the documentation to shine some light on the4mathematical backgrounds of this Package. Neither is it needed to work with5this package nor should the methods presented here be called directly. The6functions documented here are entries of the so called ring table and not to7be called directly. There are higher level methods in declared and installed8in [5XMatricesForHomalg[105X, which call this functions (--> [10X?MatricesForHomalg:The9Basic Matrix Operations[110X).[133X101112[1XB.1 [33X[0;0YThe generic Methods[133X[101X1314[33X[0;0YWe will present some methods as an example, to show the idea:[133X1516[1XB.1-1 BasisOfRowModule[101X1718[29X[2XBasisOfRowModule[102X( [3XM[103X ) [32X function19[6XReturns:[106X [33X[0;10Ya distinguished basis (i.e. a distinguished generating set) of the20module generated by M[133X2122[4X[32X Code [32X[104X23[4XBasisOfRowModule :=[104X24[4X function( M )[104X25[4X return MatrixOverGradedRing([104X26[4X BasisOfRowModule( UnderlyingMatrixOverNonGradedRing( M ) ),[104X27[4X HomalgRing( M ) );[104X28[4X end,[104X29[4X[32X[104X3031[1XB.1-2 DecideZeroRows[101X3233[29X[2XDecideZeroRows[102X( [3XA[103X, [3XB[103X ) [32X function34[6XReturns:[106X [33X[0;10Ya reduced form of [3XA[103X with respect to [3XB[103X[133X3536[4X[32X Code [32X[104X37[4XDecideZeroRows :=[104X38[4X function( A, B )[104X39[4X return MatrixOverGradedRing([104X40[4X DecideZeroRows( UnderlyingMatrixOverNonGradedRing( A ),[104X41[4X UnderlyingMatrixOverNonGradedRing( B ) ),[104X42[4X HomalgRing( A ) );[104X43[4X end,[104X44[4X[32X[104X4546[1XB.1-3 SyzygiesGeneratorsOfRows[101X4748[29X[2XSyzygiesGeneratorsOfRows[102X( [3XM[103X ) [32X function49[6XReturns:[106X [33X[0;10Ya distinguished basis of the syzygies of the argument[133X5051[4X[32X Code [32X[104X52[4XSyzygiesGeneratorsOfRows :=[104X53[4X function( M )[104X54[4X return MatrixOverGradedRing([104X55[4X SyzygiesGeneratorsOfRows( UnderlyingMatrixOverNonGradedRing( M ) ),[104X56[4X HomalgRing( M ) );[104X57[4X end,[104X58[4X[32X[104X596061[1XB.2 [33X[0;0YTools[133X[101X6263[33X[0;0YThe package [5XGradedRingForHomalg[105X also implements tool functions. These are64referred to from [5XMatricesForHomalg[105X automatically. We list the implemented65methods here are and refer to the [5XMatricesForHomalg[105X documentation (-->66[10X?MatricesForHomalg: The Matrix Tool Operations[110X and67[10X?MatricesForHomalg:RingElement[110X) for details. All tools functions from68[5XMatricesForHomalg[105X not listed here are also supported by fallback tools.[133X6970[30X [33X[0;6YIsZero[133X7172[30X [33X[0;6YIsOne[133X7374[30X [33X[0;6YMinus[133X7576[30X [33X[0;6YDivideByUnit[133X7778[30X [33X[0;6YIsUnit[133X7980[30X [33X[0;6YSum[133X8182[30X [33X[0;6YProduct[133X8384[30X [33X[0;6YShallowCopy[133X8586[30X [33X[0;6YZeroMatrix[133X8788[30X [33X[0;6YIdentityMatrix[133X8990[30X [33X[0;6YAreEqualMatrices[133X9192[30X [33X[0;6YInvolution[133X9394[30X [33X[0;6YCertainRows[133X9596[30X [33X[0;6YCertainColumns[133X9798[30X [33X[0;6YUnionOfRows[133X99100[30X [33X[0;6YUnionOfColumns[133X101102[30X [33X[0;6YDiagMat[133X103104[30X [33X[0;6YKroneckerMat[133X105106[30X [33X[0;6YMulMat[133X107108[30X [33X[0;6YAddMat[133X109110[30X [33X[0;6YSubMat[133X111112[30X [33X[0;6YCompose[133X113114[30X [33X[0;6YNrRows[133X115116[30X [33X[0;6YNrColumns[133X117118[30X [33X[0;6YIsZeroMatrix[133X119120[30X [33X[0;6YIsDiagonalMatrix[133X121122[30X [33X[0;6YZeroRows[133X123124[30X [33X[0;6YZeroColumns[133X125126127128