CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
B Overview of the GradedRingForHomalg Package Source Code
3
4
This appendix is included in the documentation to shine some light on the
5
mathematical backgrounds of this Package. Neither is it needed to work with
6
this package nor should the methods presented here be called directly. The
7
functions documented here are entries of the so called ring table and not to
8
be called directly. There are higher level methods in declared and installed
9
in MatricesForHomalg, which call this functions (--> ?MatricesForHomalg:The
10
Basic Matrix Operations).
11
12
13
B.1 The generic Methods
14
15
We will present some methods as an example, to show the idea:
16
17
B.1-1 BasisOfRowModule
18
19
BasisOfRowModule( M )  function
20
Returns: a distinguished basis (i.e. a distinguished generating set) of the
21
module generated by M
22
23
 Code 
24
BasisOfRowModule :=
25
 function( M )
26
 return MatrixOverGradedRing(
27
 BasisOfRowModule( UnderlyingMatrixOverNonGradedRing( M ) ),
28
 HomalgRing( M ) );
29
 end,
30

31
32
B.1-2 DecideZeroRows
33
34
DecideZeroRows( A, B )  function
35
Returns: a reduced form of A with respect to B
36
37
 Code 
38
DecideZeroRows :=
39
 function( A, B )
40
 return MatrixOverGradedRing(
41
 DecideZeroRows( UnderlyingMatrixOverNonGradedRing( A ),
42
 UnderlyingMatrixOverNonGradedRing( B ) ),
43
 HomalgRing( A ) );
44
 end,
45

46
47
B.1-3 SyzygiesGeneratorsOfRows
48
49
SyzygiesGeneratorsOfRows( M )  function
50
Returns: a distinguished basis of the syzygies of the argument
51
52
 Code 
53
SyzygiesGeneratorsOfRows :=
54
 function( M )
55
 return MatrixOverGradedRing(
56
 SyzygiesGeneratorsOfRows( UnderlyingMatrixOverNonGradedRing( M ) ),
57
 HomalgRing( M ) );
58
 end,
59

60
61
62
B.2 Tools
63
64
The package GradedRingForHomalg also implements tool functions. These are
65
referred to from MatricesForHomalg automatically. We list the implemented
66
methods here are and refer to the MatricesForHomalg documentation (-->
67
?MatricesForHomalg: The Matrix Tool Operations and
68
?MatricesForHomalg:RingElement) for details. All tools functions from
69
MatricesForHomalg not listed here are also supported by fallback tools.
70
71
 IsZero
72
73
 IsOne
74
75
 Minus
76
77
 DivideByUnit
78
79
 IsUnit
80
81
 Sum
82
83
 Product
84
85
 ShallowCopy
86
87
 ZeroMatrix
88
89
 IdentityMatrix
90
91
 AreEqualMatrices
92
93
 Involution
94
95
 CertainRows
96
97
 CertainColumns
98
99
 UnionOfRows
100
101
 UnionOfColumns
102
103
 DiagMat
104
105
 KroneckerMat
106
107
 MulMat
108
109
 AddMat
110
111
 SubMat
112
113
 Compose
114
115
 NrRows
116
117
 NrColumns
118
119
 IsZeroMatrix
120
121
 IsDiagonalMatrix
122
123
 ZeroRows
124
125
 ZeroColumns
126
127
128