Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W FundamentalDomain.gd HAPcryst package Marc Roeder ## ## ## #H @(#)$Id: FundamentalDomain.gd, v 0.1.11 2013/10/27 18:31:09 gap Exp $ ## #Y Copyright (C) 2006 Marc Roeder #Y #Y This program is free software; you can redistribute it and/or #Y modify it under the terms of the GNU General Public License #Y as published by the Free Software Foundation; either version 2 #Y of the License, or (at your option) any later version. #Y #Y This program is distributed in the hope that it will be useful, #Y but WITHOUT ANY WARRANTY; without even the implied warranty of #Y MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #Y GNU General Public License for more details. #Y #Y You should have received a copy of the GNU General Public License #Y along with this program; if not, write to the Free Software #Y Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA ## Revision.("FundamentalDomain_gd"):= "@(#)$Id: FundamentalDomain.gd, v 0.1.11 2013/10/27 18:31:09 gap Exp $"; ##################################### ###### General functions for crystallographic groups. ###### They decide which of the below functions will be used. ###### If the group is Bieberbach, the Bieberbach method will ###### be used. In the other cases, the geometric method will ###################################### DeclareOperation("FundamentalDomainStandardSpaceGroup", [IsGroup]); DeclareOperation("FundamentalDomainStandardSpaceGroup", [IsVector,IsGroup]); ##################################### ###### Geometric function for crystallographic groups with ###### standard-orthogonal point group: ###################################### DeclareOperation("FundamentalDomainFromGeneralPointAndOrbitPartGeometric", [IsVector,IsMatrix]); ##################################### ###### Functions for Bieberbach groups: ###################################### DeclareOperation("FundamentalDomainBieberbachGroupNC", [IsGroup]); DeclareOperation("FundamentalDomainBieberbachGroupNC", [IsVector,IsGroup]); DeclareOperation("FundamentalDomainBieberbachGroupNC", [IsVector,IsGroup,IsMatrix]); DeclareOperation("FundamentalDomainBieberbachGroup", [IsGroup]); DeclareOperation("FundamentalDomainBieberbachGroup", [IsVector,IsGroup]); DeclareOperation("FundamentalDomainBieberbachGroup", [IsVector,IsGroup,IsMatrix]); ############################################################################# ## #O IsFundamentalDomainStandardSpaceGroup ## ## tests if a given polyhedron is a fundamental domain of a crystallographic ## group (not necessarily Bieberbach) ## DeclareOperation("IsFundamentalDomainStandardSpaceGroup", [IsPolymakeObject,IsGroup]); ############################################################################# ## #O IsFundamentalDomainBieberbachGroup ## ## Tests if a given polyhedron is a fundamental domain for a group and if the ## group is Bieberbach. ## Returns 'true' if group is Bieberbach and polyhedron is fundamental domain ## Returns 'false' if the polyhedron is not a fundamental domain ## (regardless of structure of group). ## Returns 'fail' if the group is not Bieberbach ## DeclareOperation("IsFundamentalDomainBieberbachGroup", [IsPolymakeObject,IsGroup]);