Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

562574 views
1
2
3
Hap Programming – An experimental framework for objectifying the data
4
structures of Hap
5
6
7
( development version of 27.10.2013 )
8
9
10
Marc Röder
11
12
13
14
Marc Röder
15
Email: mailto:marc.roeder(at)nuigalway.ie
16
17
18
Address: Marc Röder, Department of Mathematics, NUI Galway, Irleland
19
20
21
-------------------------------------------------------
22
Abstract
23
This extension does not change the behaviour of Hap and is fully
24
backwards-compatible. It is not a part of Hap and there is no guarantee that
25
it will at any point be supported by Hap. Use at your own risk.
26
27
28
-------------------------------------------------------
29
Copyright
30
© 2007 Marc Röder.
31
32
This package is distributed under the terms of the GNU General Public
33
License version 2 or later (at your convenience). See the file LICENSE.txt
34
or http://www.gnu.org/copyleft/gpl.html
35
36
37
-------------------------------------------------------
38
Acknowledgements
39
This work was supported by Marie Curie Grant No. MTKD-CT-2006-042685
40
41
42
-------------------------------------------------------
43
44
45
Contents (HAPprog)
46
47
1 Resolutions in Hap
48
1.1 The Standard Representation HapResolutionRep
49
1.2 The HapLargeGroupResolutionRep Representation
50
2 Accessing and Manipulating Resolutions
51
2.1 Representation-Independent Access Methods
52
2.1-1 StrongestValidRepresentationForLetter
53
2.1-2 StrongestValidRepresentationForWord
54
2.1-3 PositionInGroupOfResolution
55
2.1-4 IsValidGroupInt
56
2.1-5 GroupElementFromPosition
57
2.1-6 MultiplyGroupElts
58
2.1-7 MultiplyFreeZGLetterWithGroupElt
59
2.1-8 MultiplyFreeZGWordWithGroupElt
60
2.1-9 BoundaryOfFreeZGLetter
61
2.1-10 BoundaryOfFreeZGWord
62
2.2 Converting Between Representations
63
2.2-1 ConvertStandardLetter
64
2.2-2 ConvertStandardWord
65
2.2-3 ConvertLetterToStandardRep
66
2.2-4 ConvertWordToStandardRep
67
2.3 Special Methods for HapResolutionRep
68
2.3-1 IsFreeZGLetter
69
2.3-2 IsFreeZGWord
70
2.3-3 MultiplyGroupEltsNC
71
2.3-4 MultiplyFreeZGLetterWithGroupEltNC
72
2.3-5 MultiplyFreeZGWordWithGroupEltNC
73
2.3-6 BoundaryOfFreeZGLetterNC
74
2.3-7 BoundaryOfFreeZGWordNC
75
2.4 The HapLargeGroupResolutionRep Representation
76
2.4-1 GroupRingOfResolution
77
2.4-2 MultiplyGroupElts_LargeGroupRep
78
2.4-3 IsFreeZGLetterNoTermCheck_LargeGroupRep
79
2.4-4 IsFreeZGWordNoTermCheck_LargeGroupRep
80
2.4-5 IsFreeZGLetter_LargeGroupRep
81
2.4-6 IsFreeZGWord_LargeGroupRep
82
2.4-7 MultiplyFreeZGLetterWithGroupElt_LargeGroupRep
83
2.4-8 MultiplyFreeZGWordWithGroupElt_LargeGroupRep
84
2.4-9 GeneratorsOfModuleOfResolution_LargeGroupRep
85
2.4-10 BoundaryOfGenerator_LargeGroupRep
86
2.4-11 BoundaryOfFreeZGLetterNC_LargeGroupRep
87
2.4-12 BoundaryOfFreeZGWord_LargeGroupRep
88
3 Contracting Homotopies
89
3.1 The PartialContractingHomotopy Data Type
90
3.1-1 ResolutionOfContractingHomotopy
91
3.1-2 PartialContractingHomotopyLookup
92
93
94
-------------------------------------------------------
95
96