GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
<Section><Heading>The <K>HapLargeGroupResolutionRep</K> Representation</Heading>12The large group representation has one additional component called3<C>groupring</C>.4Elements of the modules in a resolution are represented by lists of group5ring elements. The length of the list corresponds to the dimension of the6free module.7<P/>89All methods for the generic representation do also work for the large group10representation. Some of them are wrappers for special methods which do only11work for this representation.12The following list only contains the methods which are not already present in13the generic representation.14<P/>15Note that the input or the output of these functions does not comply16with the standard representation.1718<ManSection>19<Meth Name="GroupRingOfResolution" Arg="resolution"/>20<Returns>group ring</Returns>21<Description>22This returns the group ring of <A>resolution</A>. Note that by the way that23group rings are handled in &GAP;, this is not equal to24<C>GroupRing(R,GroupOfResolution(<A>resolution</A>))</C> where <C>R</C> is25the ring of the resolution.26</Description>27</ManSection>282930<ManSection>31<Meth Name="MultiplyGroupElts_LargeGroupRep" Arg="resolution x y" />32<Meth Name="MultiplyGroupEltsNC_LargeGroupRep" Arg="resolution x y"/>33<Returns>group element</Returns>34<Description>35Returns the product of <A>x</A> and <A>y</A>. The NC version does not check36whether <A>x</A> and <A>y</A> are actually elements of the group of37<A>resolution</A>.38</Description>39</ManSection>404142<ManSection>43<Meth Name="IsFreeZGLetterNoTermCheck_LargeGroupRep" Arg="resolution letter"/>44<Returns>boolean</Returns>45<Description>46Returns <K>true</K> if <A>letter</A> has the form of a letter (a module47element with exactly one non-zero entry which has exactly one non-zero48coefficient) a module of <A>resolution</A> in the49<K>HapLargeGroupResolution</K> representation. Note that it is not tested if50<A>letter</A> actually is a letter in any term of <A>resolution</A>51</Description>52</ManSection>535455<ManSection>56<Meth Name="IsFreeZGWordNoTermCheck_LargeGroupRep" Arg="resolution word"/>57<Returns>boolean</Returns>58<Description>59Returns <K>true</K> if <A>word</A> has the form of a word of a module of60<A>resolution</A> in the <K>HapLargeGroupResolution</K> representation. Note61that it is not tested if <A>word</A> actually is a word in any term of62<A>resolution</A>.63</Description>64</ManSection>656667<ManSection>68<Meth Name="IsFreeZGLetter_LargeGroupRep" Arg="resolution term letter"/>69<Returns>boolean</Returns>70<Description>71Returns <K>true</K> if and only if <A>letter</A> is a letter (a word of72length 1) of the <A>term</A>th module of <A>resolution</A> in the73<K>hapLargeGroupResolution</K> representation. I.e. it tests if74<A>letter</A> is a module element with exactly one non-zero entry which has75exactly one non-zero coefficient.76</Description>77</ManSection>787980<ManSection>81<Meth Name="IsFreeZGWord_LargeGroupRep" Arg="resolution term word"/>82<Returns>boolean</Returns>83<Description>84Tests if <A>word</A> is an element of the <A>term</A>th module of85<A>resoultion</A>.86</Description>87</ManSection>888990<ManSection>91<Meth Name="MultiplyFreeZGLetterWithGroupElt_LargeGroupRep" Arg="resolution92letter g"/>93<Meth Name="MultiplyFreeZGLetterWithGroupEltNC_LargeGroupRep" Arg="resolution94letter g"/>95<Returns>free ZG letter in large group representation</Returns>96<Description>97Multiplies the letter <A>letter</A> with the group element <A>g</A> and98returns the result. The NC version does not check whether <A>g</A> is an99element of the group of <A>resolution</A> and <A>letter</A> can be a letter.100</Description>101</ManSection>102103104<ManSection>105<Meth Name="MultiplyFreeZGWordWithGroupElt_LargeGroupRep" Arg="resolution106word g"/>107<Meth Name="MultiplyFreeZGWordWithGroupEltNC_LargeGroupRep" Arg="resolution108word g"/>109<Returns>free ZG word in large group representation</Returns>110<Description>111Multiplies the word <A>word</A> with the group element <A>g</A> and112returns the result. The NC version does not check whether <A>g</A> is an113element of the group of <A>resolution</A> and <A>word</A> can be a word.114</Description>115</ManSection>116117118<ManSection>119<Meth Name="GeneratorsOfModuleOfResolution_LargeGroupRep" Arg="resolution120term"/>121<Returns>list of letters/words in large group representation</Returns>122<Description>123Returns a set of generators for the <A>term</A>th module of124<A>resolution</A>. The returned value is a list of vectors of group ring125elements.126</Description>127</ManSection>128129<ManSection>130<Meth Name="BoundaryOfGenerator_LargeGroupRep" Arg="resolution term n"/>131<Meth Name="BoundaryOfGeneratorNC_LargeGroupRep" Arg="resolution term n"/>132<Returns>free ZG word in the large group representation</Returns>133<Description>134Returns the boundary of the <A>n</A>th generator of the <A>term</A>th module135of <A>resolution</A> as a word in the <A>n-1</A>st module (in large group136representation). The NC version does not check whether there is a137<A>term</A>th module and if it has at least <A>n</A> generators.138</Description>139</ManSection>140141142<ManSection>143<Meth Name="BoundaryOfFreeZGLetterNC_LargeGroupRep" Arg="resolution term144letter"/>145<Meth Name="BoundaryOfFreeZGLetter_LargeGroupRep" Arg="resolution term letter"/>146<Returns>free ZG word in large group representation</Returns>147<Description>148Calculates the boundary of the letter <A>letter</A> of the <A>term</A>th149module of <A>resolution</A> in large group representation.150The NC version does not check whether <A>letter</A> actually is a letter in151the <A>term</A>th module.152</Description>153</ManSection>154155156<ManSection>157<Meth Name="BoundaryOfFreeZGWord_LargeGroupRep" Arg="resolution term word"/>158<Returns>free ZG word in large group representation</Returns>159<Description>160Calculates the boundary of the element <A>word</A> of the <A>term</A>th161module of <A>resolution</A> in large group representation.162The NC version does not check whether <A>word</A> actually is a word in the163<A>term</A>th module.164</Description>165</ManSection>166167168</Section>169170171