Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

562574 views
1
<Section><Heading>The <K>HapLargeGroupResolutionRep</K> Representation</Heading>
2
3
The large group representation has one additional component called
4
<C>groupring</C>.
5
Elements of the modules in a resolution are represented by lists of group
6
ring elements. The length of the list corresponds to the dimension of the
7
free module.
8
<P/>
9
10
All methods for the generic representation do also work for the large group
11
representation. Some of them are wrappers for special methods which do only
12
work for this representation.
13
The following list only contains the methods which are not already present in
14
the generic representation.
15
<P/>
16
Note that the input or the output of these functions does not comply
17
with the standard representation.
18
19
<ManSection>
20
<Meth Name="GroupRingOfResolution" Arg="resolution"/>
21
<Returns>group ring</Returns>
22
<Description>
23
This returns the group ring of <A>resolution</A>. Note that by the way that
24
group rings are handled in &GAP;, this is not equal to
25
<C>GroupRing(R,GroupOfResolution(<A>resolution</A>))</C> where <C>R</C> is
26
the ring of the resolution.
27
</Description>
28
</ManSection>
29
30
31
<ManSection>
32
<Meth Name="MultiplyGroupElts_LargeGroupRep" Arg="resolution x y" />
33
<Meth Name="MultiplyGroupEltsNC_LargeGroupRep" Arg="resolution x y"/>
34
<Returns>group element</Returns>
35
<Description>
36
Returns the product of <A>x</A> and <A>y</A>. The NC version does not check
37
whether <A>x</A> and <A>y</A> are actually elements of the group of
38
<A>resolution</A>.
39
</Description>
40
</ManSection>
41
42
43
<ManSection>
44
<Meth Name="IsFreeZGLetterNoTermCheck_LargeGroupRep" Arg="resolution letter"/>
45
<Returns>boolean</Returns>
46
<Description>
47
Returns <K>true</K> if <A>letter</A> has the form of a letter (a module
48
element with exactly one non-zero entry which has exactly one non-zero
49
coefficient) a module of <A>resolution</A> in the
50
<K>HapLargeGroupResolution</K> representation. Note that it is not tested if
51
<A>letter</A> actually is a letter in any term of <A>resolution</A>
52
</Description>
53
</ManSection>
54
55
56
<ManSection>
57
<Meth Name="IsFreeZGWordNoTermCheck_LargeGroupRep" Arg="resolution word"/>
58
<Returns>boolean</Returns>
59
<Description>
60
Returns <K>true</K> if <A>word</A> has the form of a word of a module of
61
<A>resolution</A> in the <K>HapLargeGroupResolution</K> representation. Note
62
that it is not tested if <A>word</A> actually is a word in any term of
63
<A>resolution</A>.
64
</Description>
65
</ManSection>
66
67
68
<ManSection>
69
<Meth Name="IsFreeZGLetter_LargeGroupRep" Arg="resolution term letter"/>
70
<Returns>boolean</Returns>
71
<Description>
72
Returns <K>true</K> if and only if <A>letter</A> is a letter (a word of
73
length 1) of the <A>term</A>th module of <A>resolution</A> in the
74
<K>hapLargeGroupResolution</K> representation. I.e. it tests if
75
<A>letter</A> is a module element with exactly one non-zero entry which has
76
exactly one non-zero coefficient.
77
</Description>
78
</ManSection>
79
80
81
<ManSection>
82
<Meth Name="IsFreeZGWord_LargeGroupRep" Arg="resolution term word"/>
83
<Returns>boolean</Returns>
84
<Description>
85
Tests if <A>word</A> is an element of the <A>term</A>th module of
86
<A>resoultion</A>.
87
</Description>
88
</ManSection>
89
90
91
<ManSection>
92
<Meth Name="MultiplyFreeZGLetterWithGroupElt_LargeGroupRep" Arg="resolution
93
letter g"/>
94
<Meth Name="MultiplyFreeZGLetterWithGroupEltNC_LargeGroupRep" Arg="resolution
95
letter g"/>
96
<Returns>free ZG letter in large group representation</Returns>
97
<Description>
98
Multiplies the letter <A>letter</A> with the group element <A>g</A> and
99
returns the result. The NC version does not check whether <A>g</A> is an
100
element of the group of <A>resolution</A> and <A>letter</A> can be a letter.
101
</Description>
102
</ManSection>
103
104
105
<ManSection>
106
<Meth Name="MultiplyFreeZGWordWithGroupElt_LargeGroupRep" Arg="resolution
107
word g"/>
108
<Meth Name="MultiplyFreeZGWordWithGroupEltNC_LargeGroupRep" Arg="resolution
109
word g"/>
110
<Returns>free ZG word in large group representation</Returns>
111
<Description>
112
Multiplies the word <A>word</A> with the group element <A>g</A> and
113
returns the result. The NC version does not check whether <A>g</A> is an
114
element of the group of <A>resolution</A> and <A>word</A> can be a word.
115
</Description>
116
</ManSection>
117
118
119
<ManSection>
120
<Meth Name="GeneratorsOfModuleOfResolution_LargeGroupRep" Arg="resolution
121
term"/>
122
<Returns>list of letters/words in large group representation</Returns>
123
<Description>
124
Returns a set of generators for the <A>term</A>th module of
125
<A>resolution</A>. The returned value is a list of vectors of group ring
126
elements.
127
</Description>
128
</ManSection>
129
130
<ManSection>
131
<Meth Name="BoundaryOfGenerator_LargeGroupRep" Arg="resolution term n"/>
132
<Meth Name="BoundaryOfGeneratorNC_LargeGroupRep" Arg="resolution term n"/>
133
<Returns>free ZG word in the large group representation</Returns>
134
<Description>
135
Returns the boundary of the <A>n</A>th generator of the <A>term</A>th module
136
of <A>resolution</A> as a word in the <A>n-1</A>st module (in large group
137
representation). The NC version does not check whether there is a
138
<A>term</A>th module and if it has at least <A>n</A> generators.
139
</Description>
140
</ManSection>
141
142
143
<ManSection>
144
<Meth Name="BoundaryOfFreeZGLetterNC_LargeGroupRep" Arg="resolution term
145
letter"/>
146
<Meth Name="BoundaryOfFreeZGLetter_LargeGroupRep" Arg="resolution term letter"/>
147
<Returns>free ZG word in large group representation</Returns>
148
<Description>
149
Calculates the boundary of the letter <A>letter</A> of the <A>term</A>th
150
module of <A>resolution</A> in large group representation.
151
The NC version does not check whether <A>letter</A> actually is a letter in
152
the <A>term</A>th module.
153
</Description>
154
</ManSection>
155
156
157
<ManSection>
158
<Meth Name="BoundaryOfFreeZGWord_LargeGroupRep" Arg="resolution term word"/>
159
<Returns>free ZG word in large group representation</Returns>
160
<Description>
161
Calculates the boundary of the element <A>word</A> of the <A>term</A>th
162
module of <A>resolution</A> in large group representation.
163
The NC version does not check whether <A>word</A> actually is a word in the
164
<A>term</A>th module.
165
</Description>
166
</ManSection>
167
168
169
</Section>
170
171