CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Path: gap4r8 / pkg / Hap1.12 / doc / CW.xml
Views: 418346
1
<Chapter><Heading>Regular CW-Complexes</Heading>
2
3
<Table Align="|l|" >
4
5
<Row>
6
<Item>
7
<Index>SimplicialComplexToRegularCWComplex</Index>
8
<C>SimplicialComplexToRegularCWComplex(K)</C>
9
10
<P/>
11
Inputs a simplicial complex <M>K</M> and returns the corresponding regular CW-complex.
12
</Item>
13
</Row>
14
15
16
<Row>
17
<Item>
18
<Index>CubicalComplexToRegularCWComplex</Index>
19
<C>CubicalComplexToRegularCWComplex(K)</C>
20
<C>CubicalComplexToRegularCWComplex(K,n)</C>
21
22
<P/>
23
Inputs a pure cubical complex (or cubical complex) <M>K</M> and returns the corresponding regular CW-complex. If a positive integer <M>n</M> is entered as an optional second argument, then just the <M>n</M>-skeleton of <M>K</M> is returned.
24
</Item>
25
</Row>
26
27
<Row>
28
<Item>
29
<Index>CriticalCellsOfRegularCWComplex</Index>
30
<C>CriticalCellsOfRegularCWComplex(Y)</C>
31
<C>CriticalCellsOfRegularCWComplex(Y,n)</C>
32
33
<P/>
34
Inputs a regular CW-complex <M>Y</M> and returns the critical cells of <M>Y</M> with respect to some discrete vector field. If <M>Y</M> does not initially have a discrete vector field then one is constructed.
35
36
<P/> If a positive integer <M>n</M> is given as a second optional input, then just the critical cells in dimensions up to and including <M>n</M> are returned.
37
38
<P/> The function <M>CriticalCellsOfRegularCWComplex(Y)</M> works by homotopy
39
reducing cells starting at the top dimension. The function <M>CriticalCellsOfRegularCWComplex(Y,n)</M> works by homotopy coreducing cells starting at dimension 0. The two methods may well return different numbers of cells.
40
</Item>
41
</Row>
42
43
<Row>
44
<Item>
45
<Index>ChainComplex</Index>
46
<C>ChainComplex(Y)</C>
47
48
<P/>
49
Inputs a regular CW-complex <M>Y</M> and returns the cellular chain complex of a CW-complex W whose cells correspond to the critical cells of <M>Y</M> with respect to some discrete vector field. If <M>Y</M> does not initially have a discrete vector field then one is constructed.
50
</Item>
51
</Row>
52
53
<Row>
54
<Item>
55
<Index>ChainComplexOfRegularCWComplex</Index>
56
<C>ChainComplexOfRegularCWComplex(Y)</C>
57
58
<P/>
59
Inputs a regular CW-complex <M>Y</M> and returns the cellular chain complex of <M>Y</M>.
60
</Item>
61
</Row>
62
63
64
<Row>
65
<Item>
66
<Index>FundamentalGroup</Index>
67
<Index>FundamentalGroupOfRegularCWComplex</Index>
68
<C>FundamentalGroup(Y)</C>
69
<C>FundamentalGroup(Y,n)</C>
70
71
<P/>
72
Inputs a regular CW-complex <M>Y</M> and, optionally, the number of some 0-cell. It returns the fundamental group of <M>Y</M> based at the 0-cell <M>n</M>. The group is returned as a finitely presented group. If <M>n</M> is not specified then it is set <M>n=1</M>. The algorithm requires a discrete vector field on <M>Y</M>. If <M>Y</M> does not initially have a discrete vector field then one is constructed.
73
74
</Item>
75
</Row>
76
77
78
79
80
81
82
</Table>
83
</Chapter>
84
85
86
87