CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> Cat-1-groups</Heading>
2
3
<Table Align="|l|" >
4
5
<Row>
6
<Item>
7
<Index>AutomorphismGroupAsCatOneGroup</Index>
8
<C>AutomorphismGroupAsCatOneGroup(G)</C>
9
10
11
<P/>
12
Inputs a group <M>G</M> and returns the Cat-1-group <M>C</M>
13
corresponding to the crossed module <M>G\rightarrow Aut(G)</M>.
14
</Item>
15
</Row>
16
17
<Row>
18
<Item>
19
<Index>HomotopyGroup</Index>
20
<C>HomotopyGroup(C,n)</C>
21
22
23
<P/>
24
Inputs a cat-1-group <M>C</M> and an integer n. It returns the <M>n</M>th homotopy group of <M>C</M>.
25
26
</Item>
27
</Row>
28
29
<Row>
30
<Item>
31
<Index>HomotopyModule</Index>
32
<C>HomotopyModule(C,2)</C>
33
34
35
<P/>
36
Inputs a cat-1-group <M>C</M> and an integer n=2. It returns the second
37
homotopy group of <M>C</M> as a G-module (i.e. abelian G-outer group)
38
where G is the fundamental group of C.
39
40
</Item>
41
</Row>
42
43
<Row>
44
<Item>
45
<Index>QuasiIsomorph</Index>
46
<C>QuasiIsomorph(C)</C>
47
48
49
<P/>
50
Inputs a cat-1-group <M>C</M> and returns a cat-1-group <M>D</M> for which there exists some homomorphism <M>C\rightarrow D</M> that
51
induces isomorphisms on homotopy groups.
52
53
<P/> This function was implemented by <B>Le Van Luyen</B>.
54
55
</Item>
56
</Row>
57
58
59
<Row>
60
<Item>
61
<Index>ModuleAsCatOneGroup</Index>
62
<C>ModuleAsCatOneGroup(G,alpha,M)</C>
63
64
65
<P/>
66
Inputs a group <M>G</M>, an abelian group <M>M</M> and
67
a homomorphism <M>\alpha\colon G\rightarrow Aut(M)</M>.
68
It returns the Cat-1-group <M>C</M>
69
corresponding th the zero crossed module <M>0\colon M\rightarrow G</M>.
70
</Item>
71
</Row>
72
73
<Row>
74
<Item>
75
<Index>MooreComplex</Index>
76
<C>MooreComplex(C)</C>
77
78
79
<P/>
80
Inputs a cat-1-group <M>C</M> and returns its Moore complex
81
as a
82
G-complex (i.e. as a complex of groups considered as 1-outer groups).
83
</Item>
84
</Row>
85
86
<Row>
87
<Item>
88
<Index>NormalSubgroupAsCatOneGroup</Index>
89
<C>NormalSubgroupAsCatOneGroup(G,N)</C>
90
91
92
<P/>
93
Inputs a group <M>G</M> with normal subgroup <M>N</M>.
94
It returns the Cat-1-group <M>C</M>
95
corresponding th the inclusion
96
crossed module <M> N\rightarrow G</M>.
97
98
</Item>
99
</Row>
100
101
<Row>
102
<Item>
103
<Index>XmodToHAP</Index>
104
<C>XmodToHAP(C)</C>
105
106
107
<P/>
108
Inputs a cat-1-group <M>C</M>
109
obtained from the Xmod package and
110
returns a cat-1-group <M>D</M> for which IsHapCatOneGroup(D) returns true.
111
112
<P/>
113
It returns "fail" id <M>C</M> has not been produced by the Xmod package.
114
</Item>
115
</Row>
116
117
118
</Table>
119
</Chapter>
120
121
122
123