Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> Cat-1-groups</Heading>12<Table Align="|l|" >34<Row>5<Item>6<Index>AutomorphismGroupAsCatOneGroup</Index>7<C>AutomorphismGroupAsCatOneGroup(G)</C>8910<P/>11Inputs a group <M>G</M> and returns the Cat-1-group <M>C</M>12corresponding to the crossed module <M>G\rightarrow Aut(G)</M>.13</Item>14</Row>1516<Row>17<Item>18<Index>HomotopyGroup</Index>19<C>HomotopyGroup(C,n)</C>202122<P/>23Inputs a cat-1-group <M>C</M> and an integer n. It returns the <M>n</M>th homotopy group of <M>C</M>.2425</Item>26</Row>2728<Row>29<Item>30<Index>HomotopyModule</Index>31<C>HomotopyModule(C,2)</C>323334<P/>35Inputs a cat-1-group <M>C</M> and an integer n=2. It returns the second36homotopy group of <M>C</M> as a G-module (i.e. abelian G-outer group)37where G is the fundamental group of C.3839</Item>40</Row>4142<Row>43<Item>44<Index>QuasiIsomorph</Index>45<C>QuasiIsomorph(C)</C>464748<P/>49Inputs a cat-1-group <M>C</M> and returns a cat-1-group <M>D</M> for which there exists some homomorphism <M>C\rightarrow D</M> that50induces isomorphisms on homotopy groups.5152<P/> This function was implemented by <B>Le Van Luyen</B>.5354</Item>55</Row>565758<Row>59<Item>60<Index>ModuleAsCatOneGroup</Index>61<C>ModuleAsCatOneGroup(G,alpha,M)</C>626364<P/>65Inputs a group <M>G</M>, an abelian group <M>M</M> and66a homomorphism <M>\alpha\colon G\rightarrow Aut(M)</M>.67It returns the Cat-1-group <M>C</M>68corresponding th the zero crossed module <M>0\colon M\rightarrow G</M>.69</Item>70</Row>7172<Row>73<Item>74<Index>MooreComplex</Index>75<C>MooreComplex(C)</C>767778<P/>79Inputs a cat-1-group <M>C</M> and returns its Moore complex80as a81G-complex (i.e. as a complex of groups considered as 1-outer groups).82</Item>83</Row>8485<Row>86<Item>87<Index>NormalSubgroupAsCatOneGroup</Index>88<C>NormalSubgroupAsCatOneGroup(G,N)</C>899091<P/>92Inputs a group <M>G</M> with normal subgroup <M>N</M>.93It returns the Cat-1-group <M>C</M>94corresponding th the inclusion95crossed module <M> N\rightarrow G</M>.9697</Item>98</Row>99100<Row>101<Item>102<Index>XmodToHAP</Index>103<C>XmodToHAP(C)</C>104105106<P/>107Inputs a cat-1-group <M>C</M>108obtained from the Xmod package and109returns a cat-1-group <M>D</M> for which IsHapCatOneGroup(D) returns true.110111<P/>112It returns "fail" id <M>C</M> has not been produced by the Xmod package.113</Item>114</Row>115116117</Table>118</Chapter>119120121122123