CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> Cocycles</Heading>
2
3
<Table Align="|l|" >
4
5
<Row>
6
<Item>
7
<Index> CcGroup (HAPcocyclic)</Index>
8
<C>CcGroup(A,f) </C>
9
<P/>
10
11
Inputs a <M>G</M>-module <M>A</M> (i.e. an abelian <M>G</M>-outer group) and a
12
standard 2-cocycle f <M>G x G ---> A</M>. It returns the extension group determined by the cocycle. The group is returned as a CcGroup.
13
14
<P/> This is a HAPcocyclic function and thus only works when HAPcocyclic is loaded.
15
16
</Item>
17
</Row>
18
19
20
<Row>
21
<Item>
22
<Index> CocycleCondition</Index>
23
<C>CocycleCondition(R,n) </C>
24
<P/>
25
26
Inputs a resolution <M>R</M> and an integer <M>n</M>&tgt;<M>0</M>.
27
It returns an integer matrix <M>M</M>
28
with the following property. Suppose <M>d=R.dimension(n)</M>.
29
An integer vector <M>f=[f_1, \ldots , f_d]</M>
30
then represents a <M>ZG</M>-homomorphism <M>R_n \longrightarrow Z_q</M>
31
which sends the <M>i</M>th generator of <M>R_n</M> to the integer
32
<M>f_i</M> in the trivial <M>ZG</M>-module <M>Z_q</M> (where possibly <M>q=0</M>
33
). The homomorphism <M>f</M> is a cocycle if and only if <M>M^tf=0</M>
34
mod <M>q</M>.
35
</Item>
36
</Row>
37
38
<Row>
39
<Item>
40
<Index> StandardCocycle</Index>
41
<C>StandardCocycle(R,f,n) </C>
42
<Br/>
43
<C>StandardCocycle(R,f,n,q) </C>
44
<P/>
45
46
Inputs a <M>ZG</M>-resolution <M>R</M> (with contracting homotopy),
47
a positive integer <M>n</M> and an integer vector <M>f</M>
48
representing an <M>n</M>-cocycle <M>R_n \longrightarrow Z_q</M>
49
where <M>G</M> acts trivially on <M>Z_q</M>. It is assumed <M>q=0</M>
50
unless a value for <M>q</M> is entered. The command returns a function
51
<M>F(g_1, ..., g_n)</M>
52
which is the standard cocycle <M>G_n \longrightarrow Z_q</M>
53
corresponding to <M>f</M>. At present the command is implemented only for
54
<M>n=2</M> or <M>3</M>.
55
</Item>
56
</Row>
57
58
<Row>
59
<Item>
60
<Index> Syzygy</Index>
61
<C>Syzygy(R,g) </C>
62
<P/>
63
64
Inputs a <M>ZG</M>-resolution <M>R</M>
65
(with contracting homotopy) and a list
66
<M>g = [g[1], ..., g[n]]</M> of elements in <M>G</M>.
67
It returns a word <M>w</M> in <M>R_n</M>.
68
The word <M>w</M> is the image of the <M>n</M>-simplex in the
69
standard bar resolution corresponding to the <M>n</M>-tuple <M>g</M>.
70
This function can be used to construct explicit standard <M>n</M>-cocycles.
71
(Currently implemented only for n&tlt;4.)
72
</Item>
73
</Row>
74
75
</Table>
76
</Chapter>
77
78
79
80