Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> Cocycles</Heading>12<Table Align="|l|" >34<Row>5<Item>6<Index> CcGroup (HAPcocyclic)</Index>7<C>CcGroup(A,f) </C>8<P/>910Inputs a <M>G</M>-module <M>A</M> (i.e. an abelian <M>G</M>-outer group) and a11standard 2-cocycle f <M>G x G ---> A</M>. It returns the extension group determined by the cocycle. The group is returned as a CcGroup.1213<P/> This is a HAPcocyclic function and thus only works when HAPcocyclic is loaded.1415</Item>16</Row>171819<Row>20<Item>21<Index> CocycleCondition</Index>22<C>CocycleCondition(R,n) </C>23<P/>2425Inputs a resolution <M>R</M> and an integer <M>n</M>&tgt;<M>0</M>.26It returns an integer matrix <M>M</M>27with the following property. Suppose <M>d=R.dimension(n)</M>.28An integer vector <M>f=[f_1, \ldots , f_d]</M>29then represents a <M>ZG</M>-homomorphism <M>R_n \longrightarrow Z_q</M>30which sends the <M>i</M>th generator of <M>R_n</M> to the integer31<M>f_i</M> in the trivial <M>ZG</M>-module <M>Z_q</M> (where possibly <M>q=0</M>32). The homomorphism <M>f</M> is a cocycle if and only if <M>M^tf=0</M>33mod <M>q</M>.34</Item>35</Row>3637<Row>38<Item>39<Index> StandardCocycle</Index>40<C>StandardCocycle(R,f,n) </C>41<Br/>42<C>StandardCocycle(R,f,n,q) </C>43<P/>4445Inputs a <M>ZG</M>-resolution <M>R</M> (with contracting homotopy),46a positive integer <M>n</M> and an integer vector <M>f</M>47representing an <M>n</M>-cocycle <M>R_n \longrightarrow Z_q</M>48where <M>G</M> acts trivially on <M>Z_q</M>. It is assumed <M>q=0</M>49unless a value for <M>q</M> is entered. The command returns a function50<M>F(g_1, ..., g_n)</M>51which is the standard cocycle <M>G_n \longrightarrow Z_q</M>52corresponding to <M>f</M>. At present the command is implemented only for53<M>n=2</M> or <M>3</M>.54</Item>55</Row>5657<Row>58<Item>59<Index> Syzygy</Index>60<C>Syzygy(R,g) </C>61<P/>6263Inputs a <M>ZG</M>-resolution <M>R</M>64(with contracting homotopy) and a list65<M>g = [g[1], ..., g[n]]</M> of elements in <M>G</M>.66It returns a word <M>w</M> in <M>R_n</M>.67The word <M>w</M> is the image of the <M>n</M>-simplex in the68standard bar resolution corresponding to the <M>n</M>-tuple <M>g</M>.69This function can be used to construct explicit standard <M>n</M>-cocycles.70(Currently implemented only for n&tlt;4.)71</Item>72</Row>7374</Table>75</Chapter>7677787980