CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> Coxeter diagrams and graphs of groups</Heading>
2
3
<Table Align="|l|" >
4
5
<Row>
6
<Item>
7
<Index> CoxeterDiagramComponents</Index>
8
<C>CoxeterDiagramComponents(D) </C>
9
<P/>
10
Inputs a Coxeter diagram <M>D</M> and returns a list <M>[D_1, ..., D_d]</M> of the maximal connected subgraphs <M>D_i</M>.
11
</Item>
12
</Row>
13
14
<Row>
15
<Item>
16
<Index> CoxeterDiagramDegree</Index>
17
<C>CoxeterDiagramDegree(D,v) </C>
18
<P/>
19
Inputs a Coxeter diagram <M>D</M> and vertex <M>v</M>.
20
It returns the degree of <M>v</M> (i.e. the number of edges
21
incident with <M>v</M>).
22
</Item>
23
</Row>
24
25
<Row>
26
<Item>
27
<Index> CoxeterDiagramDisplay</Index>
28
<C>CoxeterDiagramDisplay(D) </C>
29
<C>CoxeterDiagramDisplay(D,"web browser") </C>
30
<P/>
31
32
Inputs a Coxeter diagram <M>D</M>
33
and displays it as a .gif file. It uses the Mozilla web
34
browser as a default to view the diagram.
35
An alternative browser can be set using a second argument.
36
<P/>
37
This function requires Graphviz software.
38
</Item>
39
</Row>
40
41
<Row>
42
<Item>
43
<Index> CoxeterDiagramFpArtinGroup</Index>
44
<C>CoxeterDiagramFpArtinGroup(D) </C>
45
<P/>
46
47
Inputs a Coxeter diagram <M>D</M>
48
and returns the corresponding finitely presented Artin group.
49
</Item>
50
</Row>
51
52
<Row>
53
<Item>
54
<Index> CoxeterDiagramFpCoxeterGroup</Index>
55
<C>CoxeterDiagramFpCoxeterGroup(D) </C>
56
<P/>
57
58
Inputs a Coxeter diagram <M>D</M>
59
and returns the corresponding finitely presented Coxeter group.
60
</Item>
61
</Row>
62
63
<Row>
64
<Item>
65
<Index> CoxeterDiagramIsSpherical</Index>
66
<C>CoxeterDiagramIsSpherical(D) </C>
67
<P/>
68
69
Inputs a Coxeter diagram <M>D</M> and returns "true" if
70
the associated Coxeter groups is finite, and
71
returns "false" otherwise.
72
</Item>
73
</Row>
74
75
<Row>
76
<Item>
77
<Index> CoxeterDiagramMatrix</Index>
78
<C>CoxeterDiagramMatrix(D) </C>
79
<P/>
80
81
Inputs a Coxeter diagram <M>D</M> and returns a matrix
82
representation of it. The matrix is given as a function
83
<M>DiagramMatrix(D)(i,j)</M> where <M>i,j</M>
84
can range over the vertices.
85
</Item>
86
</Row>
87
88
<Row>
89
<Item>
90
<Index> CoxeterSubDiagram</Index>
91
<C>CoxeterSubDiagram(D,V) </C>
92
<P/>
93
94
Inputs a Coxeter diagram <M>D</M> and a subset <M>V</M>
95
of its vertices. It returns the full sub-diagram of <M>D</M>
96
with vertex set <M>V</M>.
97
</Item>
98
</Row>
99
100
<Row>
101
<Item>
102
<Index> CoxeterDiagramVertices</Index>
103
<C>CoxeterDiagramVertices(D) </C>
104
<P/>
105
106
Inputs a Coxeter diagram <M>D</M> and returns its set of vertices.
107
</Item>
108
</Row>
109
110
<Row>
111
<Item>
112
<Index> EvenSubgroup</Index>
113
<C>EvenSubgroup(G) </C>
114
<P/>
115
116
Inputs a group <M>G</M> and returns a subgroup <M>G^+</M>.
117
The subgroup is that generated by all products <M>xy</M> where
118
<M>x</M> and <M>y</M> range over the generating set for <M>G</M>
119
stored by GAP. The subgroup is probably only meaningful when <M>G</M>
120
is an Artin or Coxeter group.
121
</Item>
122
</Row>
123
124
<Row>
125
<Item>
126
<Index> GraphOfGroupsDisplay</Index>
127
<C> GraphOfGroupsDisplay(D) </C>
128
<C>GraphOfGroupsDisplay(D,"web browser") </C>
129
<P/>
130
131
Inputs a graph of groups <M>D</M> and displays it as a .gif file.
132
It uses the Mozilla web browser as a default to view the diagram.
133
An alternative browser can be set using a second argument.
134
<P/>
135
This function requires Graphviz software.
136
</Item>
137
</Row>
138
139
<Row>
140
<Item>
141
<Index> GraphOfResolutions</Index>
142
<C> GraphOfResolutions(D,n) </C>
143
<P/>
144
145
Inputs a graph of groups <M>D</M> and a positive integer <M>n</M>.
146
It returns a graph of resolutions, each resolution being of length <M>n</M>.
147
It uses the function ResolutionGenericGroup() to produce the resolutions.
148
</Item>
149
</Row>
150
151
<Row>
152
<Item>
153
<Index> GraphOfGroups</Index>
154
<C> GraphOfGroups(D) </C>
155
<P/>
156
157
Inputs a graph of resolutions <M>D</M>
158
and returns the corresponding graph of groups.
159
</Item>
160
</Row>
161
162
163
<Row>
164
<Item>
165
<Index> GraphOfResolutionsDisplay</Index>
166
<C> GraphOfResolutionsDisplay(D) </C>
167
<P/>
168
169
Inputs a graph of resolutions <M>D</M> and displays it as a .gif file.
170
It uses the Mozilla web browser as a default to view the diagram.
171
<P/>
172
This function requires Graphviz software.
173
</Item>
174
</Row>
175
176
177
178
<Row>
179
<Item>
180
<Index> GraphOfGroupsTest</Index>
181
<C>GraphOfGroupsTest(D) </C>
182
<P/>
183
184
Inputs an object <M>D</M> and itries to test
185
whether it is a Graph of Groups.
186
However, it DOES NOT test the injectivity of any homomorphisms.
187
It returns true if <M>D</M> passes the test, and false otherwise.
188
<P/>
189
Note that there is no function <M>IsHapGraphOfGroups()</M> because no special data type has been created for these graphs.
190
</Item>
191
</Row>
192
193
194
<Row>
195
<Item>
196
<Index> TreeOfGroupsToContractibleGcomplex</Index>
197
<C>TreeOfGroupsToContractibleGcomplex(D,G) </C>
198
<P/>
199
200
Inputs a graph of groups <M>D</M> which is a tree, and also inputs the fundamental group <M>G</M> of the tree in a form which contains each of the groups in the graph as subgroups.
201
It returns a corresponding contractible G-complex.
202
</Item>
203
</Row>
204
205
<Row>
206
<Item>
207
<Index> TreeOfResolutionsToContractibleGcomplex</Index>
208
<C>TreeOfResolutionsToContractibleGcomplex(D,G) </C>
209
<P/>
210
211
Inputs a graph of resolutions <M>D</M> which is a tree, and also inputs the fundamental group <M>G</M> of the tree in a form which contains each of the groups in the graph as subgroups.
212
It returns a corresponding contractible G-complex. The resolutions are stored as a component of the contractible <M>G</M>-complex.
213
</Item>
214
</Row>
215
216
</Table>
217
</Chapter>
218
219
220
221