Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> Coxeter diagrams and graphs of groups</Heading>12<Table Align="|l|" >34<Row>5<Item>6<Index> CoxeterDiagramComponents</Index>7<C>CoxeterDiagramComponents(D) </C>8<P/>9Inputs a Coxeter diagram <M>D</M> and returns a list <M>[D_1, ..., D_d]</M> of the maximal connected subgraphs <M>D_i</M>.10</Item>11</Row>1213<Row>14<Item>15<Index> CoxeterDiagramDegree</Index>16<C>CoxeterDiagramDegree(D,v) </C>17<P/>18Inputs a Coxeter diagram <M>D</M> and vertex <M>v</M>.19It returns the degree of <M>v</M> (i.e. the number of edges20incident with <M>v</M>).21</Item>22</Row>2324<Row>25<Item>26<Index> CoxeterDiagramDisplay</Index>27<C>CoxeterDiagramDisplay(D) </C>28<C>CoxeterDiagramDisplay(D,"web browser") </C>29<P/>3031Inputs a Coxeter diagram <M>D</M>32and displays it as a .gif file. It uses the Mozilla web33browser as a default to view the diagram.34An alternative browser can be set using a second argument.35<P/>36This function requires Graphviz software.37</Item>38</Row>3940<Row>41<Item>42<Index> CoxeterDiagramFpArtinGroup</Index>43<C>CoxeterDiagramFpArtinGroup(D) </C>44<P/>4546Inputs a Coxeter diagram <M>D</M>47and returns the corresponding finitely presented Artin group.48</Item>49</Row>5051<Row>52<Item>53<Index> CoxeterDiagramFpCoxeterGroup</Index>54<C>CoxeterDiagramFpCoxeterGroup(D) </C>55<P/>5657Inputs a Coxeter diagram <M>D</M>58and returns the corresponding finitely presented Coxeter group.59</Item>60</Row>6162<Row>63<Item>64<Index> CoxeterDiagramIsSpherical</Index>65<C>CoxeterDiagramIsSpherical(D) </C>66<P/>6768Inputs a Coxeter diagram <M>D</M> and returns "true" if69the associated Coxeter groups is finite, and70returns "false" otherwise.71</Item>72</Row>7374<Row>75<Item>76<Index> CoxeterDiagramMatrix</Index>77<C>CoxeterDiagramMatrix(D) </C>78<P/>7980Inputs a Coxeter diagram <M>D</M> and returns a matrix81representation of it. The matrix is given as a function82<M>DiagramMatrix(D)(i,j)</M> where <M>i,j</M>83can range over the vertices.84</Item>85</Row>8687<Row>88<Item>89<Index> CoxeterSubDiagram</Index>90<C>CoxeterSubDiagram(D,V) </C>91<P/>9293Inputs a Coxeter diagram <M>D</M> and a subset <M>V</M>94of its vertices. It returns the full sub-diagram of <M>D</M>95with vertex set <M>V</M>.96</Item>97</Row>9899<Row>100<Item>101<Index> CoxeterDiagramVertices</Index>102<C>CoxeterDiagramVertices(D) </C>103<P/>104105Inputs a Coxeter diagram <M>D</M> and returns its set of vertices.106</Item>107</Row>108109<Row>110<Item>111<Index> EvenSubgroup</Index>112<C>EvenSubgroup(G) </C>113<P/>114115Inputs a group <M>G</M> and returns a subgroup <M>G^+</M>.116The subgroup is that generated by all products <M>xy</M> where117<M>x</M> and <M>y</M> range over the generating set for <M>G</M>118stored by GAP. The subgroup is probably only meaningful when <M>G</M>119is an Artin or Coxeter group.120</Item>121</Row>122123<Row>124<Item>125<Index> GraphOfGroupsDisplay</Index>126<C> GraphOfGroupsDisplay(D) </C>127<C>GraphOfGroupsDisplay(D,"web browser") </C>128<P/>129130Inputs a graph of groups <M>D</M> and displays it as a .gif file.131It uses the Mozilla web browser as a default to view the diagram.132An alternative browser can be set using a second argument.133<P/>134This function requires Graphviz software.135</Item>136</Row>137138<Row>139<Item>140<Index> GraphOfResolutions</Index>141<C> GraphOfResolutions(D,n) </C>142<P/>143144Inputs a graph of groups <M>D</M> and a positive integer <M>n</M>.145It returns a graph of resolutions, each resolution being of length <M>n</M>.146It uses the function ResolutionGenericGroup() to produce the resolutions.147</Item>148</Row>149150<Row>151<Item>152<Index> GraphOfGroups</Index>153<C> GraphOfGroups(D) </C>154<P/>155156Inputs a graph of resolutions <M>D</M>157and returns the corresponding graph of groups.158</Item>159</Row>160161162<Row>163<Item>164<Index> GraphOfResolutionsDisplay</Index>165<C> GraphOfResolutionsDisplay(D) </C>166<P/>167168Inputs a graph of resolutions <M>D</M> and displays it as a .gif file.169It uses the Mozilla web browser as a default to view the diagram.170<P/>171This function requires Graphviz software.172</Item>173</Row>174175176177<Row>178<Item>179<Index> GraphOfGroupsTest</Index>180<C>GraphOfGroupsTest(D) </C>181<P/>182183Inputs an object <M>D</M> and itries to test184whether it is a Graph of Groups.185However, it DOES NOT test the injectivity of any homomorphisms.186It returns true if <M>D</M> passes the test, and false otherwise.187<P/>188Note that there is no function <M>IsHapGraphOfGroups()</M> because no special data type has been created for these graphs.189</Item>190</Row>191192193<Row>194<Item>195<Index> TreeOfGroupsToContractibleGcomplex</Index>196<C>TreeOfGroupsToContractibleGcomplex(D,G) </C>197<P/>198199Inputs a graph of groups <M>D</M> which is a tree, and also inputs the fundamental group <M>G</M> of the tree in a form which contains each of the groups in the graph as subgroups.200It returns a corresponding contractible G-complex.201</Item>202</Row>203204<Row>205<Item>206<Index> TreeOfResolutionsToContractibleGcomplex</Index>207<C>TreeOfResolutionsToContractibleGcomplex(D,G) </C>208<P/>209210Inputs a graph of resolutions <M>D</M> which is a tree, and also inputs the fundamental group <M>G</M> of the tree in a form which contains each of the groups in the graph as subgroups.211It returns a corresponding contractible G-complex. The resolutions are stored as a component of the contractible <M>G</M>-complex.212</Item>213</Row>214215</Table>216</Chapter>217218219220221