Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> <M>FpG</M>-modules</Heading>12<Table Align="|l|" >34<Row>5<Item>6<Index> CompositionSeriesOfFpGModules</Index>7<C>CompositionSeriesOfFpGModules(M) </C>8<P/>910Inputs an <M>FpG</M>-module <M>M</M> and11returns a list of <M>FpG</M>-modules that constitute a composition series for <M>M</M>.12</Item>13</Row>141516<Row>17<Item>18<Index> DirectSumOfFpGModules</Index>19<C>DirectSumOfFpGModules(M,N) </C>20<C>DirectSumOfFpGModules([ M[1], M[2], ..., M[k] ])) </C>21<P/>2223Inputs two <M>FpG</M>-modules <M>M</M> and <M>N</M>24with common group and characteristic. It returns the direct sum of25<M>M</M> and <M>N</M> as an <M>FpG</M>-Module.26<P/>27Alternatively, the function can input a list of <M>FpG</M>-modules28with common group <M>G</M>. It returns the direct sum of the list.29</Item>30</Row>3132<Row>33<Item>34<Index> FpGModule</Index>35<C>FpGModule(A,P) </C>36<C>FpGModule(A,G,p) </C>37<P/>3839Inputs a <M>p</M>-group <M>P</M> and a matrix <M>A</M>40whose rows have length a multiple of the order of <M>G</M>.41It returns the <Quoted>canonical</Quoted>42<M>FpG</M>-module generated by the rows of <M>A</M>.4344<P/>45A small non-prime-power group <M>G</M> can also be input, provided the characteristic <M>p</M> is entered as a third input variable.46</Item>47</Row>4849<Row>50<Item>51<Index> FpGModuleDualBasis</Index>52<C>FpGModuleDualBasis(M) </C>53<P/>5455Inputs an <M>FpG</M>-module <M>M</M>. It returns a record56<M>R</M> with two components:57<List>58<Item><M>R.freeModule</M> is the free module <M>FG</M> of rank one.</Item>59<Item><M>R.basis</M> is a list representing an <M>F</M>-basis60for the module <M>Hom_{FG}(M,FG)</M>. Each term in the61list is a matrix <M>A</M> whose rows are vectors in <M>FG</M>62such that <M>M!.generators[i] \longrightarrow A[i]</M>63extends to a module homomorphism <M>M \longrightarrow FG</M>.64</Item>65</List>66</Item>67</Row>6869<Row>70<Item>71<Index> FpGModuleHomomorphism</Index>72<C>FpGModuleHomomorphism(M,N,A) </C>73<C>FpGModuleHomomorphismNC(M,N,A) </C>74<P/>7576Inputs <M>FpG</M>-modules <M>M</M> and <M>N</M> over a common <M>p</M>-group <M>G</M>.77Also inputs a list <M>A</M> of vectors in the vector space spanned by78<M>N!.matrix</M>. It tests that the function79<P/>80<M> M!.generators[i] \longrightarrow A[i]</M>81<P/>82extends to a homomorphism of <M>FpG</M>-modules and,83if the test is passed, returns the corresponding <M>FpG</M>-module84homomorphism. If the test is failed it returns fail.85<P/>86The "NC" version of the function assumes that the input87defines a homomorphism and simply returns the <M>FpG</M>-module homomorphism.88</Item>89</Row>90<Row>91<Item>92<Index>DesuspensionFpGModule</Index>93<C> DesuspensionFpGModule(M,n)</C>94<C>DesuspensionFpGModule(R,n) </C>95<P/>9697Inputs a positive integer <M>n</M> and and FpG-module <M>M</M>. It returns an98FpG-module <M>D^nM</M> which is mathematically related to <M>M</M> via99an exact sequence100<M> 0 \longrightarrow D^nM \longrightarrow R_n \longrightarrow \ldots101\longrightarrow R_0 \longrightarrow M \longrightarrow 0</M> where <M>R_\ast</M>102is a free resolution.103(If <M>G=Group(M)</M> is of prime-power order then the resolution is minimal.)104105<P/>106Alternatively, the function can input a positive integer <M>n</M>107and at least <M>n</M> terms of a free108resolution <M>R</M> of <M>M</M>.109110</Item>111</Row>112<Row>113<Item>114<Index> RadicalOfFpGModule</Index>115<C>RadicalOfFpGModule(M) </C>116<P/>117118Inputs an <M>FpG</M>-module <M>M</M> with <M>G</M> a <M>p</M>-group, and returns the Radical of119<M>M</M> as an <M>FpG</M>-module. (Ig <M>G</M> is not a <M>p</M>-group then a submodule of the radical is returned.120</Item>121</Row>122123<Row>124<Item>125<Index> RadicalSeriesOfFpGModule</Index>126<C>RadicalSeriesOfFpGModule(M) </C>127<P/>128129Inputs an <M>FpG</M>-module <M>M</M> and130returns a list of <M>FpG</M>-modules that constitute the radical131series for <M>M</M>.132</Item>133</Row>134135136137<Row>138<Item>139<Index> GeneratorsOfFpGModule</Index>140<C>GeneratorsOfFpGModule(M) </C>141<P/>142143Inputs an <M>FpG</M>-module <M>M</M> and returns a matrix whose144rows correspond to a minimal generating set for <M>M</M>.145</Item>146</Row>147<Row>148<Item>149<Index> ImageOfFpGModuleHomomorphism</Index>150<C>ImageOfFpGModuleHomomorphism(f) </C>151<P/>152153Inputs an <M>FpG</M>-module homomorphism <M>f:M \longrightarrow N</M>154and returns its image <M>f(M)</M> as an <M>FpG</M>-module.155</Item>156</Row>157158159<Row>160<Item>161<Index> GroupAlgebraAsFpGModule</Index>162<C>GroupAlgebraAsFpGModule(G) </C>163<P/>164165Inputs a <M>p</M>-group <M>G</M> and166returns its mod <M>p</M> group algebra as an <M>FpG</M>-module.167</Item>168</Row>169170171172173<Row>174<Item>175<Index> IntersectionOfFpGModules</Index>176<C>IntersectionOfFpGModules(M,N) </C>177<P/>178179Inputs two <M>FpG</M>-modules <M>M, N</M> arising as submodules in a180common free module <M>(FG)^n</M> where <M>G</M> is a finite group and181<M>F</M> the field of <M>p</M>-elements. It returns the <M>FpG</M>-module182arising as the intersection of <M>M</M> and <M>N</M>.183</Item>184</Row>185186<Row>187<Item>188<Index> IsFpGModuleHomomorphismData</Index>189<C>IsFpGModuleHomomorphismData(M,N,A) </C>190<P/>191192Inputs <M>FpG</M>-modules <M>M</M> and <M>N</M> over a common <M>p</M>-group <M>G</M>.193Also inputs a list <M>A</M> of vectors in the vector space spanned by194<M>N!.matrix</M>. It returns true if the function195<P/>196<M> M!.generators[i] \longrightarrow A[i]</M>197<P/>198extends to a homomorphism of <M>FpG</M>-modules. Otherwise it199returns false.200</Item>201</Row>202203<Row>204<Item>205<Index> MaximalSubmoduleOfFpGModule</Index>206<C>MaximalSubmoduleOfFpGModule(M) </C>207<P/>208209Inputs an <M>FpG</M>-module <M>M</M> and210returns one maximal <M>FpG</M>-submodule of <M>M</M>.211</Item>212</Row>213214215<Row>216<Item>217<Index> MaximalSubmodulesOfFpGModule</Index>218<C>MaximalSubmodulesOfFpGModule(M) </C>219<P/>220221Inputs an <M>FpG</M>-module <M>M</M> and222returns the list of maximal <M>FpG</M>-submodules of <M>M</M>.223</Item>224</Row>225226227228<Row>229<Item>230<Index> MultipleOfFpGModule </Index>231<C>MultipleOfFpGModule(w,M) </C>232<P/>233234Inputs an <M>FpG</M>-module <M>M</M> and a list235<M>w:=[g_1 , ..., g_t]</M> of elements in the group <M>G=M!.group</M>.236The list <M>w</M> can be thought of as representing the element237<M>w=g_1 + \ldots + g_t</M> in the group algebra <M>FG</M>,238and the function returns a semi-echelon matrix <M>B</M>239which is a basis for the vector subspace <M>wM</M> .240</Item>241</Row>242<Row>243<Item>244<Index> ProjectedFpGModule</Index>245<C>ProjectedFpGModule(M,k) </C>246<P/>247248Inputs an <M>FpG</M>-module <M>M</M> of ambient dimension <M>n|G|</M>,249and an integer <M>k</M> between <M>1</M> and <M>n</M>. The module250<M>M</M> is a submodule of the free module <M>(FG)^n</M> . Let251<M>M_k</M> denote the intersection of <M>M</M> with the last <M>k</M>252summands of <M>(FG)^n</M> .253The function returns the image of the254projection of <M>M_k</M> onto the <M>k</M>-th summand of <M>(FG)^n</M> . This255image is returned an <M>FpG</M>-module with256ambient dimension <M>|G|</M>.257</Item>258</Row>259<Row>260<Item>261<Index> RandomHomomorphismOfFpGModules</Index>262<C>RandomHomomorphismOfFpGModules(M,N) </C>263<P/>264265Inputs two <M>FpG</M>-modules <M>M</M> and <M>N</M> over a common group266<M>G</M>. It returns a random matrix <M>A</M> whose rows are vectors in267<M>N</M> such that the function268<P/>269<M> M!.generators[i] \longrightarrow A[i]</M>270<P/>271extends to a homomorphism <M>M \longrightarrow N</M> of <M>FpG</M>-modules.272(There is a problem with this function at present.)273</Item>274</Row>275<Row>276<Item>277<Index> Rank </Index>278<C>Rank(f) </C>279<P/>280281Inputs an <M>FpG</M>-module homomorphism <M>f:M \longrightarrow N</M>282and returns the dimension of the image of <M>f</M> as a vector283space over the field <M>F</M> of <M>p</M> elements.284</Item>285</Row>286<Row>287<Item>288<Index> SumOfFpGModules</Index>289<C>SumOfFpGModules(M,N) </C>290<P/>291292Inputs two <M>FpG</M>-modules <M>M, N</M> arising as submodules in293a common free module <M>(FG)^n</M> where <M>G</M> is a finite group294and <M>F</M> the field of <M>p</M>-elements. It returns the295<M>FpG</M>-Module arising as the sum of <M>M</M> and <M>N</M>.296</Item>297</Row>298<Row>299<Item>300<Index> SumOp</Index>301<C>SumOp(f,g) </C>302<P/>303304Inputs two <M>FpG</M>-module homomorphisms <M>f,g:M \longrightarrow N</M>305with common sorce and common target. It returns the sum <M>f+g:M \longrightarrow N</M> . (This operation is also available using "+".306</Item>307</Row>308309<Row>310<Item>311<Index> VectorsToFpGModuleWords</Index>312<C>VectorsToFpGModuleWords(M,L) </C>313<P/>314315316Inputs an <M>FpG</M>-module <M>M</M> and a list317<M>L=[v_1,\ldots ,v_k]</M> of vectors in <M>M</M>.318It returns a list <M>L'= [x_1,...,x_k]</M> . Each319<M>x_j=[[W_1,G_1],...,[W_t,G_t]]</M>320is a list of integer pairs corresponding to an expression of321<M>v_j</M> as a word322<P/>323<M> v_j = g_1*w_1 + g_2*w_1 + ... + g_t*w_t </M>324325<P/>326where327328<P/>329330<M>g_i=Elements(M!.group)[G_i]</M>331<P/>332<M>w_i=GeneratorsOfFpGModule(M)[W_i]</M>333.334335336</Item>337</Row>338339</Table>340</Chapter>341342343344345