CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> Knots and Quandles </Heading>
2
3
<Table Align="|l|" >
4
5
<Row >
6
<Item> Knots </Item>
7
</Row>
8
9
<Row>
10
<Item>
11
<Index> PresentationKnotQuandle</Index>
12
<C>PresentationKnotQuandle(gaussCode) </C>
13
<P/>
14
15
Inputs a Gauss Code of a knot (with the orientations; see <M>GaussCodeOfPureCubicalKnot</M> in HAP package) and outputs the generators and relators of the knot quandle associated (in the form of a record).
16
</Item>
17
</Row>
18
19
<Row>
20
<Item>
21
<Index> PD2GC</Index>
22
<C>PD2GC(PD) </C>
23
<P/>
24
25
Inputs a Planar Diagram of a knot; outputs the Gauss Code associated (with the orientations).
26
</Item>
27
</Row>
28
29
<Row>
30
<Item>
31
<Index>PlanarDiagramKnot</Index>
32
<C>PlanarDiagramKnot(n,k) </C>
33
<P/>
34
35
Returns a Planar Diagram for the <M>k</M>-th knot with <M>n</M> crossings (<M>n</M>&le;<M>12</M>) if it exists; fail otherwise.
36
</Item>
37
</Row>
38
39
<Row>
40
<Item>
41
<Index> GaussCodeKnot</Index>
42
<C>GaussCodeKnot(n,k) </C>
43
<P/>
44
45
Returns a Gauss Code (with orientations) for the <M>k</M>-th knot with <M>n</M> crossings (<M>n</M>&le;<M>12</M>) if it exists; fail otherwise.
46
</Item>
47
</Row>
48
49
<Row>
50
<Item>
51
<Index> PresentationKnotQuandleKnot</Index>
52
<C>PresentationKnotQuandleKnot(n,k) </C>
53
<P/>
54
55
Returns generators and relators (in the form of a record) for the <M>k</M>-th knot with <M>n</M> crossings (<M>n</M>&le;<M>12</M>) if it exists; fail otherwise.
56
</Item>
57
</Row>
58
59
<Row>
60
<Item>
61
<Index> NumberOfHomomorphisms</Index>
62
<C>NumberOfHomomorphisms(genRelQ,finiteQ) </C>
63
<P/>
64
65
Inputs generators and relators <M>genRelQ</M> of a knot quandle (in the form of a record, see above) and a finite quandle <M>finiteQ</M>; outputs the number of homomorphisms from the former to the latter.
66
</Item>
67
</Row>
68
69
<Row>
70
<Item>
71
<Index> PartitionedNumberOfHomomorphisms</Index>
72
<C>PartitionedNumberOfHomomorphisms(genRelQ,finiteQ) </C>
73
<P/>
74
75
Inputs generators and relators <M>genRelQ</M> of a knot quandle (in the form of a record, see above) and a finite connected quandle <M>finiteQ</M>; outputs a partition of the number of homomorphisms from the former to the latter.
76
</Item>
77
</Row>
78
79
<Row >
80
<Item> Quandles </Item>
81
</Row>
82
83
<Row>
84
<Item>
85
<Index> ConjugationQuandle</Index>
86
<C>ConjugationQuandle(G,n) </C>
87
<P/>
88
89
Inputs a finite group <M>G</M> and an integer <M>n</M>; outputs the associated <M>n</M>-fold conjugation quandle.
90
</Item>
91
</Row>
92
93
<Row>
94
<Item>
95
<Index> QuandleAxiomIsSatisfied</Index>
96
<C>FirstQuandleAxiomIsSatisfied(M) </C>
97
<Br/>
98
<C>SecondQuandleAxiomIsSatisfied(M) </C>
99
<Br/>
100
<C>ThirdQuandleAxiomIsSatisfied(M) </C>
101
<P/>
102
103
Inputs a finite magma <M>M</M>; returns true if <M>M</M> satisfy the first/second/third axiom of a quandle, false otherwise.
104
</Item>
105
</Row>
106
107
<Row>
108
<Item>
109
<Index> IsQuandle</Index>
110
<C> IsQuandle(M) </C>
111
<P/>
112
113
Inputs a finite magma <M>M</M>; returns true if <M>M</M> is a quandle, false otherwise.
114
</Item>
115
</Row>
116
117
<Row>
118
<Item>
119
<Index> Quandles</Index>
120
<C>Quandles(n) </C>
121
<P/>
122
123
Returns a list of all quandles of size <M>n</M>, <M>n</M>&le;<M>6</M>. If <M>n</M>&ge;<M>7</M>, it returns fail.
124
</Item>
125
</Row>
126
127
<Row>
128
<Item>
129
<Index> Quandle</Index>
130
<C> Quandle(n,k) </C>
131
<P/>
132
133
Returns the <M>k</M>-th quandle of size <M>n</M> (<M>n</M>&le;<M>6</M>) if such a quandle exists, fail otherwise.
134
</Item>
135
</Row>
136
137
<Row>
138
<Item>
139
<Index> IdQuandle</Index>
140
<C>IdQuandle(Q) </C>
141
<P/>
142
143
Inputs a quandle <M>Q</M>; and outputs a list of integers [<M>n</M>,<M>k</M>] such that <M>Q</M> is isomorphic to <C>Quandle(n,k)</C>. If <M>n</M>&ge;<M>7</M>, then it returns [<M>n</M>,fail] (where <M>n</M> is the size of <M>Q</M>).
144
</Item>
145
</Row>
146
147
<Row>
148
<Item>
149
<Index> IsLatin</Index>
150
<C>IsLatin(Q) </C>
151
<P/>
152
153
Inputs a finite quandle <M>Q</M>; returns true if <M>Q</M> is latin, false otherwise.
154
</Item>
155
</Row>
156
157
<Row>
158
<Item>
159
<Index> IsConnectedQuandle</Index>
160
<C>IsConnectedQuandle(Q) </C>
161
<P/>
162
163
Inputs a finite quandle <M>Q</M>; returns true if <M>Q</M> is connected, false otherwise.
164
</Item>
165
</Row>
166
167
<Row>
168
<Item>
169
<Index> ConnectedQuandles</Index>
170
<C>ConnectedQuandles(n) </C>
171
<P/>
172
173
Returns a list of all connected quandles of size <M>n</M>.
174
</Item>
175
</Row>
176
177
<Row>
178
<Item>
179
<Index> ConnectedQuandle</Index>
180
<C>ConnectedQuandle(n,k) </C>
181
<P/>
182
183
Returns the <M>k</M>-th quandle of size <M>n</M> if such a quandle exists, fail otherwise.
184
</Item>
185
</Row>
186
187
<Row>
188
<Item>
189
<Index> IdConnectedQuandle</Index>
190
<C>IdConnectedQuandle(Q) </C>
191
<P/>
192
193
Inputs a connected quandle <M>Q</M>; and outputs a list of integers [<M>n</M>,<M>k</M>] such that <M>Q</M> is isomorphic to <C>ConnectedQuandle(n,k)</C>.
194
</Item>
195
</Row>
196
197
<Row>
198
<Item>
199
<Index> IsQuandleEnvelope</Index>
200
<C>IsQuandleEnvelope(Q,G,e,stigma) </C>
201
<P/>
202
203
Inputs a set <M>Q</M>, a permutation group <M>G</M>, an element <M>e</M> &isin; <M>Q</M> and an element <M>stigma </M> &isin; <M>G</M>; returns true if this structure describes a quandle envelope, false otherwise.
204
</Item>
205
</Row>
206
207
<Row>
208
<Item>
209
<Index> QuandleQuandleEnveloppe</Index>
210
<C> QuandleQuandleEnveloppe(Q,G,e,stigma) </C>
211
<P/>
212
213
Inputs a set <M>Q</M>, a permutation group <M>G</M>, an element <M>e</M> &isin; <M>Q</M> and an element <M>stigma</M> &isin; <M>G</M>.
214
If this structure describes a quandle envelope, the function returns the quandle from this quandle envelope; and fail otherwise.
215
Nb: this quandle is a connected quandle.
216
</Item>
217
</Row>
218
219
<Row>
220
<Item>
221
<Index> KnotInvariantCedric</Index>
222
<C> KnotInvariantCedric(genRelQ,n,m) </C>
223
<P/>
224
225
Inputs generators and relators of a knot quandle (in the form of a record, see above) and two integers <M>n</M> and <M>m</M>; outputs a list [<M>n</M>1,<M>n</M>2,...,<M>n</M>k] where <M>n</M>j is a partition of the number of homomorphisms from the considered knot quandle to the <M>j</M>-th connected quandle of size <M>n</M>&le;<M>i</M>&le;<M>m</M>.
226
</Item>
227
</Row>
228
229
<Row>
230
<Item>
231
<Index> RightMultiplicationGroupAsPerm</Index>
232
<C>RightMultiplicationGroupAsPerm(Q) </C>
233
<P/>
234
235
Inputs a connected quandle <M>Q</M>; output its right multiplication group whose elements are permutations.
236
</Item>
237
</Row>
238
239
<Row>
240
<Item>
241
<Index> RightMultiplicationGroup</Index>
242
<C>RightMultiplicationGroup(Q) </C>
243
<P/>
244
245
Inputs a connected quandle <M>Q</M>; output its right multiplication group whose elements are mappings from <M>Q</M> to <M>Q</M>.
246
</Item>
247
</Row>
248
249
<Row>
250
<Item>
251
<Index> AutomorphismGroupQuandleAsPerm</Index>
252
<C>AutomorphismGroupQuandleAsPerm(Q) </C>
253
<P/>
254
255
Inputs a connected quandle <M>Q</M>; outputs its automorphism group whose elements are permutations.
256
</Item>
257
</Row>
258
259
<Row>
260
<Item>
261
<Index> AutomorphismGroupQuandle</Index>
262
<C>AutomorphismGroupQuandle(Q)</C>
263
<P/>
264
265
Inputs a connected quandle <M>Q</M>; outputs its automorphism group whose elements are mappings from <M>Q</M> to <M>Q</M>.
266
</Item>
267
</Row>
268
269
270
</Table>
271
</Chapter>
272
273