CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> G-Outer Groups</Heading>
2
3
<Table Align="|l|" >
4
5
<Row>
6
<Item>
7
<Index>GOuterGroup</Index>
8
<C>GOuterGroup(E,N)</C>
9
<C>GOuterGroup()</C>
10
<P/>
11
12
Inputs a group <M>E</M> and normal subgroup <M>N</M>. It returns <M>N</M>
13
as a <M>G</M>-outer group where <M>G=E/N</M>.
14
15
<P/>
16
The function can be used without an argument. In this case an empty outer group <M>C</M> is returned. The components must be set using SetActingGroup(C,G),
17
SetActedGroup(C,N) and SetOuterAction(C,alpha).
18
19
</Item>
20
</Row>
21
22
<Row>
23
<Item>
24
<Index>GOuterGroupHomomorphismNC</Index>
25
<C>GOuterGroupHomomorphismNC(A,B,phi)</C>
26
<C>GOuterGroupHomomorphismNC()</C>
27
<P/>
28
29
Inputs G-outer groups <M>A</M> and <M>B</M> with common acting
30
group, and a group homomorphism phi:ActedGroup(A) --> ActedGroup(B).
31
It returns the corresponding G-outer homomorphism PHI:A--> B.
32
No check is made to verify that phi is actually a group homomorphism which preserves the G-action.
33
34
35
<P/>
36
The function can be used without an argument. In this case an empty outer group homomorphism <M>PHI</M> is returned. The components must then be set.
37
38
</Item>
39
</Row>
40
41
<Row>
42
<Item>
43
<Index>GOuterHomomorphismTester</Index>
44
<C>GOuterHomomorphismTester(A,B,phi)</C>
45
<P/>
46
47
Inputs G-outer groups <M>A</M> and <M>B</M> with common acting group, and a group homomorphism phi:ActedGroup(A) --> ActedGroup(B).
48
It tests whether phi is a group homomorphism which preserves the G-action.
49
50
51
<P/>
52
The function can be used without an argument. In this case an empty outer group homomorphism <M>PHI</M> is returned. The components must then be set.
53
</Item>
54
</Row>
55
56
57
<Row>
58
<Item>
59
<Index>Centre</Index>
60
<C>Centre(A)</C>
61
<P/>
62
63
Inputs G-outer group <M>A</M> and
64
returns the group theoretic centre of ActedGroup(A) as a
65
G-outer group.
66
67
</Item>
68
</Row>
69
70
<Row>
71
<Item>
72
<Index>DirectProductGog</Index>
73
<C>DirectProductGog(A,B)</C>
74
<C>DirectProductGog(Lst)</C>
75
<P/>
76
77
Inputs G-outer groups <M>A</M> and <M>B</M> with common acting group,
78
and returns their group-theoretic direct product as a G-outer group.
79
The outer action
80
on the direct product is the diagonal one.
81
82
<P/>
83
The function also applies to a list Lst of G-outer groups with common acting group.
84
85
<P/>
86
For a direct product D constructed using this function, the embeddings and projections can be obtained (as G-outer group homomorphisms) using the functions
87
Embedding(D,i) and Projection(D,i).
88
</Item>
89
</Row>
90
91
92
93
</Table>
94
</Chapter>
95
96
97
98