Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> G-Outer Groups</Heading>12<Table Align="|l|" >34<Row>5<Item>6<Index>GOuterGroup</Index>7<C>GOuterGroup(E,N)</C>8<C>GOuterGroup()</C>9<P/>1011Inputs a group <M>E</M> and normal subgroup <M>N</M>. It returns <M>N</M>12as a <M>G</M>-outer group where <M>G=E/N</M>.1314<P/>15The function can be used without an argument. In this case an empty outer group <M>C</M> is returned. The components must be set using SetActingGroup(C,G),16SetActedGroup(C,N) and SetOuterAction(C,alpha).1718</Item>19</Row>2021<Row>22<Item>23<Index>GOuterGroupHomomorphismNC</Index>24<C>GOuterGroupHomomorphismNC(A,B,phi)</C>25<C>GOuterGroupHomomorphismNC()</C>26<P/>2728Inputs G-outer groups <M>A</M> and <M>B</M> with common acting29group, and a group homomorphism phi:ActedGroup(A) --> ActedGroup(B).30It returns the corresponding G-outer homomorphism PHI:A--> B.31No check is made to verify that phi is actually a group homomorphism which preserves the G-action.323334<P/>35The function can be used without an argument. In this case an empty outer group homomorphism <M>PHI</M> is returned. The components must then be set.3637</Item>38</Row>3940<Row>41<Item>42<Index>GOuterHomomorphismTester</Index>43<C>GOuterHomomorphismTester(A,B,phi)</C>44<P/>4546Inputs G-outer groups <M>A</M> and <M>B</M> with common acting group, and a group homomorphism phi:ActedGroup(A) --> ActedGroup(B).47It tests whether phi is a group homomorphism which preserves the G-action.484950<P/>51The function can be used without an argument. In this case an empty outer group homomorphism <M>PHI</M> is returned. The components must then be set.52</Item>53</Row>545556<Row>57<Item>58<Index>Centre</Index>59<C>Centre(A)</C>60<P/>6162Inputs G-outer group <M>A</M> and63returns the group theoretic centre of ActedGroup(A) as a64G-outer group.6566</Item>67</Row>6869<Row>70<Item>71<Index>DirectProductGog</Index>72<C>DirectProductGog(A,B)</C>73<C>DirectProductGog(Lst)</C>74<P/>7576Inputs G-outer groups <M>A</M> and <M>B</M> with common acting group,77and returns their group-theoretic direct product as a G-outer group.78The outer action79on the direct product is the diagonal one.8081<P/>82The function also applies to a list Lst of G-outer groups with common acting group.8384<P/>85For a direct product D constructed using this function, the embeddings and projections can be obtained (as G-outer group homomorphisms) using the functions86Embedding(D,i) and Projection(D,i).87</Item>88</Row>89909192</Table>93</Chapter>9495969798